Projet

Général

Profil

Documentation » Historique » Version 27

François Rioult, 03/02/2011 19:55

1 3 François Rioult
h1. Documentation
2 1 François Rioult
3 4 François Rioult
KDAriane is a set of operators for data mining and machine learning, and a set of scenarios (supervised classification, missing values completion, strong emerging pattern mining, etc.). It uses Ariane as a graphical platform for designing the data streams.
4
5 1 François Rioult
h2. Installation
6 4 François Rioult
7 13 François Rioult
* [[Prerequisite]]
8 4 François Rioult
* [[KDAriane]] 
9 1 François Rioult
10 25 François Rioult
h2. Tutorial
11
12 26 François Rioult
You can read the document [[Data preparation]] for a first contact with @KDAriane@.
13 25 François Rioult
14 17 François Rioult
h2. How is Ariane working?
15 1 François Rioult
16 17 François Rioult
Ariane is a graphical platform for designing image processing streams. Ariane works with graphical operators, and allows to build loops and while.
17
"Go to the Aiane dedicated site":http://www.greyc.ensicaen.fr/~regis/Ariane/ for a full documentation about Ariane.
18
19 21 François Rioult
h2. How is KDAriane working?
20 18 François Rioult
21 20 François Rioult
KDAriane is provided with basic components for executing shell scripts. When an operator is executed, Ariane launches the script with giving the following arguments:
22 6 François Rioult
<pre>
23 17 François Rioult
script.sh parameter-1 parameter-2 ... parameter-p input-1 input-2 ... input-i output-1 output-2 ... output-o
24 24 François Rioult
</pre>
25
26
See [[Special operators for shell scripting]] for more details.
27
28
h2. Operators
29
30 9 François Rioult
The operator are divided in two categories: 
31 14 François Rioult
* [[KDD operators]] are special components for calling Weka components or RapidMiner processes.
32 9 François Rioult
* [[Shell operators]] that directly execute the commands entered by Ariane. 
33 22 François Rioult
34
h2. Pattern mining prototypes
35
36
* [[music-dfs]] : mining patterns under various constraints
37
* [[mtminer]] : levelwise minimal transversals of hypergraph
38 5 François Rioult
39 1 François Rioult
h2. Scenarios
40 10 François Rioult
41
KDAriane provides some examples of KDD realized through Ariane:
42 27 François Rioult
* [[Data preparation]]: a first scenario for the binarization of CSV data.
43
* [[Data mining complexity]]: pattern mining and complexity visualization
44
* [[CMAR]]: supervised classification with association rules [1]
45
* [[CAEP]]: supervised classification with emerging patterns [2]
46 1 François Rioult
* experiences about perturbation on training and test file with Weka classifiers and RapidMiner processes.
47
48
h2. Routines
49
50
Routines are complex streams that Ariane allows you to share.
51
* [[shell routines]]
52
* [[KDD routines]]
53 24 François Rioult
54
h2. Appendix
55 1 François Rioult
56 24 François Rioult
h3. Utilities
57
58 27 François Rioult
* [[gnuplot]]: plotting data with GNUplot
59 24 François Rioult
* [[score]] :
60
* [[complement]] :
61
* [[dictionary]] :
62
* [[segmentation]] :
63
64
h3. References