Approximate Graph Edit Distance Computation
Combining Bipartite Matching and Exact
Neighborhood Substructure Distance

Vincenzo Carletti, Benoit Gaiizere!, Luc Brunf, and Mario Vento!

tDIEM, Department of Information Engineering, Electrical Engineering and Applied
Mathematics, University of Salerno, Italy
{mvento,vcarletti}@Qunisa.it
1 GREYC CNRS UMR 6072, ENSICAEN, Caen, France
luc.brun@ensicaen.fr

Abstract. Graph edit distance corresponds to a flexible graph dissim-
ilarity measure. Unfortunately, its computation requires an exponential
complexity according to the number of nodes of both graphs being com-
pared. Some heuristics based on bipartite assignment algorithms have
been proposed in order to approximate the graph edit distance. How-
ever, these heuristics lack of accuracy since they are based either on
small patterns providing a too local information or walks whose tot-
tering induce some bias in the edit distance calculus. In this work, we
propose to extend previous heuristics by considering both less local and
more accurate patterns using subgraphs defined around each node.

1 Introduction

Graph based representations allow to model a wide variety of data [1,2]. How-
ever, since graphs do not lie in euclidean spaces, definition of a graph similarity
measure is not a trivial problem. Nonetheless, different approaches have been
explored to define similarity or dissimilarity measures between graphs [1,2]. A
first family of approaches is based on graph theory, using for example the size
of the maximum common subgraph of two graphs as their similarity measure. A
second family of approaches aims to embed graphs into euclidean spaces by ex-
tracting a set of predefined features from either graph structures [4] or spectrum
of adjacency matrices [5]. In particular, vectorial representations of graphs can
be processed using the large set of well known machine learning and statistical
pattern recognition methods defined on vectorial space. However, a drawback
of this approach is that graphs encode complex objects using nodes and rela-
tionships between nodes and a large amount of information is lost when graphs
are transformed in vectors. Hence, instead of defining an explicit embedding of
graphs, an alternative approach consists in using graph kernels [8] which corre-
spond to a scalar product between two implicit embedding of graphs. Any graph
kernel, which can be seen as a similarity measure between graphs, can then be
used in any machine learning method which access to data only through scalar

2 Vincenzo Carletti’, Benoit Gaiizére’, Luc Brun*, and Mario Vento®

products. Another interesting and widely used approach is the graph edit dis-
tance. Unlike most of the existing graph similarity measures, this approach aims
to define a dissimilarity measure between two graphs directly in the graph space.

The graph edit distance corresponds to a measure of the distortion required
to transform one graph into another. The distortion between two graphs G and
G’ can be encoded by an edit path defined as a sequence of operations transform-
ing G into G’. Such a sequence may include node or edge insertions, removals
and substitutions. Given a non-negative cost function c(.) associated to each
edit operation, the sum of elementary operation’s costs composing the edit path
defines its cost. The optimal edit path is then defined as the one having the
minimal cost among all possible edit paths transforming G into G’. This mini-
mal cost corresponds then to the graph edit distance between G and G’. More
formally, the graph edit distance is defined by the following equation:

k

deqit(G,G") = min)Z cle;). (1)

(e1,..,er)EP(G,G’) £
i=1

where P(G, G’) corresponds to all possible edit paths, each edit path consisting
in a sequence of edit operations (eq,...,ex). Therefore, computing graph edit
distance relies on finding an optimal edit path among all possible ones. A com-
mon approach consists in traversing the space of all possible edit paths by using
an heuristic such as A* search. This approach, detailed in Section 2, allows to
find an exact graph edit distance with the cost of an exponential complexity
which restricts it to rather small graphs, typically composed of up to ten nodes.

In order to tackle this complexity, Riesen and Bunke have proposed in [9] a
method to compute an approximation of the graph edit distance in a polyno-
mial time. This method exploits the close relationship between node mapping
and edit distance to reduce the complexity. Indeed, any mapping between the
set of nodes and edges of two graphs induces an edit path which substitutes all
mapped nodes and edges, and inserts or removes the non mapped nodes and
edges of the two graphs. Conversely, given an edit path between two graphs such
that each node and each edge is substituted only once, one can define a mapping
between the substituted nodes and edges of both graphs. The heuristic of Riesen
and Bunke [9] builds a mapping between the sets of nodes of two graphs using
a bipartite assignment algorithm, and deduces an edit path from this mapping.
The cost associated to this possibly non optimal edit path corresponds to an
overestimation of the exact edit distance. Obviously, the better the assignment
is, the lower the overestimation is and thus more accurate is the approximation.
The optimal bipartite assignment algorithm is based on a cost function defined
between the neighborhoods of each pair of nodes of the two graphs. The idea
behind this heuristic being that a mapping between nodes with similar neigh-
borhoods should induce an edit path associated to a low cost and thus close
to the optimal one. However, this heuristic may work poorly when the direct
neighbourhood does not allow to easily differentiate the nodes such as when
considering unlabeled graphs.

Graph Edit Distance Approximation using Exact Neighborhood Distance 3

Considering this, we can distinguish two approaches which aim to improve
the approximation of graph edit distance: A first one consists in starting from the
edit path induced by the mapping computed by the original method of Riesen
and Bunke, and improve this edit path by slightly modifying it using for example
genetic algorithms [11]. A second approach consists in improving the initial node
mapping [3]. The approach proposed in [3] associates to each node of the graph
a bag of k-walks starting from this node. The mapping cost of two nodes is then
computed by an approximation of the cost of mapping their bag of walks. This
approach allows to compute a better approximation than the original approach
defined in [9], but this gain may be altered by a low accuracy induced both by
the use of walks and an approximation of mapping costs. Therefore, in order
to compute a more accurate approximation of graph edit distance, we propose
to associate each node of the graph to a subgraph including all nodes within a
radius of k edges, such graphs being denoted as k-subgraphs. These patterns may
provide a more accurate description about the surroundings of a node than a bag
of walks. In addition, we propose to evaluate mapping costs between k-subgraphs
using either an exact or an approximated graph edit distance.

Our paper is structured as follows. First, in Section 2, we review the com-
putation of exact graph edit distance using the A* algorithm. We also discuss
about the Beam heuristic which allows to compute an approximate graph edit
distance by restricting the search space. Second, in Section 3, we review in de-
tails the approximation algorithm proposed by Riesen and Bunke in [9]. Then, in
Section 4, we present our proposition to improve the approximation of graph edit
distance by computing a mapping cost based on k-subgraphs instead of direct
neighborhood or k-walks edit distance. Finally, we present some experiments in
Section 5 showing the accuracy gain obtained using our approach.

2 Graph Edit Distance Computation: Exact Approach

The problem of computing the exact graph edit distance between two graphs
can be formulated as a search problem inside an appropriate state space, as well
as for other graph matching problems [1,2]. Considering graph edit distance
problem, the state space corresponds to the set of all complete and incomplete
edit paths transforming the source graph into the target graph. This search is
generally performed using A* algorithm.

A* is a well known search algorithm, which uses an heuristic function to
conduct the search towards an optimal solution inside a search space. It is proven
to be complete, i.e. it always find an optimal solution if it exists, and to be the
best suited algorithm to perform an heuristic search. A* algorithm consists in
finding an optimal path starting from an initial state sy to a goal state s; in
a search space S. A* begins thus by exploring the search space from sg. Then,
for each step corresponding to a state s € S, the cost corresponding to the
path from sg to s is encoded by a past-path cost function summing the cost of
each previous step, while an estimation of the cost from s to s, is provided by
an heuristic function. The sum of these two functions provides an approximate

4 Vincenzo Carletti’, Benoit Gaiizére’, Luc Brun*, and Mario Vento®

cost of the path from s¢ to s, that passes through s. So, given a current state
s, it generates a set of successor states s’ and puts non explored ones into a
frontier set, namely the Opening set. Then, the state s’ having the lowest cost
estimation to reach the goal state s, is extracted from the Opening set and is
chosen as the next state. This search process ends when a goal state s, is reached
or the Opening set is empty. It is worth noticing that under certain conditions
on heuristic function, A* always finds an optimal solution.

Time complexity of A* depends on the specific heuristic, but in the worst
case, it is exponential with respect to the length of the shortest path. In order
to reduce the complexity of A* search, a limit on the size of the Opening set
can be imposed. Clearly, in this way, the search algorithm does not guarantee
to always find the optimal solution, but only a sub optimal one. Obviously, the
probability of finding the optimal solution decreases as the limit size of Opening
set decreases. This adaptation of A* is called Beam Search.

A* algorithm can be used to find an optimal edit path between two graphs,
and thus to compute an exact graph edit distance. To this purpose, we have to
clarify the structure of the search space and how the heuristic cost function is
defined. On one hand, each state s € S, s # s4, corresponds to a partial solution,
i.e. a partial edit path which transforms a subgraph H of G into a subgraph H’
of G’. On the other hand, a goal state s, corresponds to an optimal and complete
edit path transforming G into G'.

The heuristic cost function encodes, for each state s € S, an estimation
of the cost required to reach s, from s. In this paper, we used the heuristic
function defined by Riesen and Bunke in [10]. This heuristic allows to find an
optimal mapping between nodes and edges of G and G’ which have not been
previously mapped. This optimal assignment provides a minimal mapping cost
of unprocessed sub graphs of the two graphs G — H and G’ — H’'.

As described previously, we can use Beam Search in order to reduce the
complexity of A*. However, as shown in [7], using a limitation on the size of
Opening set, we may not find an optimal edit path. Therefore, the computed
graph edit distance may correspond to an overestimation of the exact graph edit
distance.

3 Graph Edit Distance Computation: Approximate
Approach

The graph edit distance approximation framework introduced in [9] reduces the
search problem associated to exact graph edit distance computation to a Lin-
ear Sum Assignment Problem (LSAP) which can be solved in polynomial time.
Considering two graphs G and G’ the approach proposed by [9] consists in three
steps. First, G and G’ are subdivided into two sets of elements, where each el-
ement is defined as a bag of patterns encoding the local environment of a node
of G or G'. Given these two sets, we can define a cost matrix C, which encodes
the cost of mapping two elements between the two sets. Second, we resolve the
LSAP according to C. using Munkres’ algorithm [6]. This algorithm allows to

Graph Edit Distance Approximation using Exact Neighborhood Distance 5

compute an optimal assignment between the two sets associated to each graph
which corresponds to a mapping of nodes of the first graph onto nodes of the
second graph. Third, we can deduce an edit path from this optimal mapping by
inferring node and edge edit operations. The cost associated to this edit path,
which may not be optimal, corresponds to an approximation of the graph edit
distance.

More formally, let us first consider an input labeled graph G = (V, E, u,v),
where V' encodes the set of nodes, E the set of edges, p the labeling function
defined on nodes and v the labeling function defined on edges. This graph is
associated with a set of bags of patterns B = {B;},—1, . |v|. Every bag B; is
associated to a node u; € V and characterizes the local structure of G around
node wu;. The target graph G’ = (V', E',u/,v’) and its corresponding bags of
structural patterns B’ = {B;};—1 ... |y+| are given analogously. We define a cost
¢(B; — Bj) for the substitution of two bags of patterns. In order to define cost for
inserting or removing bags of patterns, we introduce an empty bag of patterns e.
Then, costs ¢(B; — ¢€) and c(e — Bj) encode respectively removal and insertion
of a bag. Given this cost definition, a cost matrix C.(B, B’) encoding costs of
substitutions, insertions, and removals of bags of structural patterns is defined
as:

C(B.B') C.(B—¢)
C.(c - B 0

where C(B, B'); ; = ¢(B; — B}), Co(B — €);j = c(B; — ¢) if i = j and +oo
elsewhere. Similarly, C.(e — B’); ; = c(e — Bj) if i = j and +o0o elsewhere.
Given the cost matrix C.(B, B’), we can compute an optimal assignment
between the sets B and B’ in O((|V]| + |V'])®) time complexity thanks to the
use of Munkres’ algorithm [6]. This algorithm allows to compute a mapping
between the two sets B and B’, which may not be unique, having the lowest
cost according to C.(B, B’). Since each bag B; is associated to a node u;, the
optimal assignment provides an optimal assignment between the nodes of both
graphs with respect to the associated bags of patterns. That is, the optimal
assignment, corresponds to a mapping ¢ : V U {e}V'l — VU {e}IV] of the nodes
V of G to the nodes V' of G'. Due to the definition of the cost matrix, which
allows both insertions and removals of elements, the mapping v is composed
of different forms of node assignments: u; — u;-, U; — €, € — u;, and € — ¢.
The mapping ¥ can be interpreted as a partial edit path between the graphs G
and G’ which only includes edit operations on nodes. The complete edit path
is obtained by completing this partial edit path with edit operations on edges.
Using simple graphs, this set of edit operations can be directly inferred from node
edit operations since edit operations performed on nodes induces substitution,
insertion or deletion of some edges in order to retrieve the target graph. Hence,
the set of edges operations required to transform G into G’ is obtained from the
set of node operations induced by 1. The cost of the complete edit path is finally
returned as an approximate graph edit distance between graphs G and G'.
This approach proposed by Riesen and Bunke allows to compute an approx-
imate edit distance in a polynomial time complexity with respect to the number

C.(B,B') = € [0, 400] VIV DXIVIHIVY (g

6 Vincenzo Carletti’, Benoit Gaiizére’, Luc Brun*, and Mario Vento®

of nodes. The low complexity of this approach allows then to use the graph
edit distance in pattern recognition problems, and reaches good prediction ac-
curacies [9]. However, the approach proposed by [9] associates to each node a
bag of patterns defined as the node itself and its direct neighbourhood, i.e. its
incident edges and its adjacent nodes. Using this kind of bags of patterns, this
approach lacks of accuracy in some applications where the direct neighbourhood
of graphs is not sufficiently discriminant. When considering such graphs, the
mapping costs associated to each pair of nodes do not differ sufficiently and the
optimal mapping depends more on the initial order of nodes than on the graph’s
structure. Therefore, in order to improve the accuracy of the approximation of
graph edit distance, Gaiizére et al. proposed in [3] to enhance the information
associated to each node by considering a bag of walks up to a length k instead
of only the direct neighbourhood. This approach follows the same scheme as the
one used by [9] and described at the beginning of this section, except that the
set of bags of patterns associated to a node is defined as the set of walks start-
ing from this node and having a particular length k. Considering such a bag of
patterns allows to extend the amount of information associated to each node by
taking into account less local structures. The bag of patterns associated to each
node is then more discriminant and leads to a better approximation of the graph
edit distance. However, the use of bags of walks induces some drawbacks. First,
the set of computed walks suffers from the tottering phenomenon which leads to
consider irrelevant patterns. These irrelevant patterns affects the mapping cost
and thus the approximation of the graph edit distance. In addition, the mapping
cost between two bags of walks is only approximated, which induces another loss
of accuracy. Therefore, we propose in the next section to tackle these drawbacks
by considering k-subgraphs associated to each node.

4 Approximate GED using K-Graphs

First, let us introduce the concept of k-subgraph (Figure 1). Given a node u € G
and a radius k € N, we define k-subgraph(u) as the subgraph of G defined by the
subset of nodes of G which can be reached from u by a path composed of maxi-
mum k edges. Given this concept, each node of the graph can be associated to
a sub structure of the graph which encodes a more or less local information, de-
pending on the value of k. However, unlike bags of walks used in [3], k-subgraphs
do not suffer from tottering phenomenon.

Following the graph edit distance approximation scheme described in sec-
tion 3, we propose to define the bag of patterns associated to each node v € V
of a graph G = (V, E, u,v) as k-subgraph(u). Then, in order to compute the
optimal assignment between two sets of patterns, we propose to define match-
ing cost ¢c(u — v) as the exact graph edit distance between k-subgraph(u) and
k-subgraph(v). However, as explained in previous paragraph, k-subgraph(u) and
k-subgraph(v) are respectively centered around nodes u and v. In addition, the
matching cost ¢(u — v) must encode the matching ability of u and v and not
only the similarity of k-subgraph(u) with k-subgraph(v). Therefore, we propose

Graph Edit Distance Approximation using Exact Neighborhood Distance 7

Fig. 1. Examples of k-graphs associated to a central node (in light grey).

to restrict the set of possible mappings in such a way that the two central nodes
u and v are mapped together. Using such a constraint, we force a substitution
operation (u — v) to be the only node edit operation performed on w and v. This
restriction allows also to slightly reduce the complexity required to compute the
exact graph edit distance by pruning a part of possible edit paths. Therefore,
given two nodes u € G and v € G’, the cost of the substitution c(u — v) is
defined as: c(u — v) = d(y,q)(k-subgraph(u), k-subgraph(v)) where d(, . cor-
responds to the graph edit distance between k-subgraph(u) and k-subgraph(v)
with restriction on node edit operations involving u and v. The enumeration of
k-subgraphs requires to perform a depth first search from each node which is as-
sociated to a complexity in O(nd*) where n is the number of nodes of the graph,
d its maximum degree and k the radius associated to k-subgraph. Therefore,
the computational effort is polynomial with the maximum degree of graphs and
is linear with the size of the graphs. It is worth noticing that this complexity
is only linear for graphs having a bounded degree. In addition, our proposition
induces to compute a graph edit distance for each pair of nodes of the graphs to
be compared. Considering two graphs having n nodes, these operations induce
n? graph edit distance computations. Hopefully, these graph edit distances are
only computed between graphs of a limited size for reasonable values of &k, which
limits computational time. However, in order to reduce this computational time,
we may use the Beam search algorithm (Section 2) and limit the queue size.

5 Experiments

Following the same test protocol as in [3], we tested our heuristic on 4 graph
datasets! encoding molecular graphs. For all these experiments and as in [3], in-
sertion/removal costs have been arbitrarily set to 3 for both edges and nodes and
substitution cost to 1 for edges and nodes, regardless of node’s or edge’s labels.
Graphs included within the 4 datasets have different characteristics: Alkane and
PAH are only composed of unlabeled graphs whereas MAO and Acyclic corre-
spond to labeled graphs. In addition, Alkane and Acyclic correspond to acyclic

! These datasets are available at http://iapr-tc15.greyc.fr/links.html

8 Vincenzo Carletti’, Benoit Gaiizére’, Luc Brun*, and Mario Vento®

graphs having a low number of nodes (8 to 9 nodes in average) whereas MAO
and PAH correspond to larger cyclic graphs (about 20 nodes in average).

Tables 1 and 2 show a comparison of the accuracy of our proposition with two
state of the art methods: the original one from Riesen [9] and an improvement of
this approach using k-walks [3], both detailed in Section 3. As in [3], chosen k is
the one obtaining the most accurate results. First, Table 1 shows the percentage
of entries of edit distance’s matrix corresponding to accuracy gain (i.e. computed
edit distance is lower), accuracy loss or equivalent accuracy obtained by our
approach versus the ones obtained by [9] and [3]. These percentages are displayed
for different ways of computing graph edit distance between k-subgraphs: exact
graph edit distance (A*) and Beam search using a queue limit of 1000 (Beam,
1000) or 100 states (Beam, 100). On one hand, we can note that our approach
provides always a better approximation of graph edit distance for 63% to 99%
of molecules’ pairs when compared to the approach of Riesen and 40% to 76%
when compared to the approach based on k-walks. These observations are still
valid even if we use Beam search algorithm in order to reduce the computational
time required by our approximation. On the other hand, we observe an accuracy
loss for only < 1% to 15% when compared to the approach of Riesen and 8% to
41% when compared to the second approach. Note however that the comparison
on PAH dataset suffers from the fact that & is limited to 2 for A* algorithm,
versus walks composed of up to 5 nodes in [3]. This limitation is induced by
the high computational time required by A* algorithm. However, we can note
that using a faster algorithm which allows to consider larger k-subgraphs, we
obtain a better approximation of our graph edit distance. Finally, these two first
experiments shows a clear gain on the accuracy of our approximation compared
to both state of the art approaches.

Same conclusions can be drawn from Table 2 which shows, for each dataset
and each method, the average edit distance (d) together with the average error of
our approximation with respect to the exact graph edit distance and the average
time required to compute graph edit distance for a pair of graphs. The exact
graph edit distance, and thus the average error, is not available for MAO and

A* Beam, 1000 Beam, 100
Dataset
Gain Loss = Gain Loss = Gain Loss =
Alkane 63% 17% 20% 60% 20% 20% 56% 23% 21%
[9} PAH 68% 17% 15% 81% 9% 9% 81% 10% 9%
MAO 9% < 1% < 1% 98% 2% < 1% 93% 7% < 1%

Acyclic 5% 15% 10% 72% 18% 11% 68% 21% 11%

Alkane 63% 17% 21% 59% 19% 22% 54% 21% 26%
PAH 40% 41% 18% 63% 23% 14% 61% 25% 14%
MAO 6% 8% 16% 69% 16% 16% 47% 43% 10%
Acyclic 59% 22% 18% 55% 25% 19% 51% 30% 19%

3]

Table 1. Accuracy comparison of approach versus [3] and [9].

Graph Edit Distance Approximation using Exact Neighborhood Distance 9

Method Alkane Acyclic MAO PAH
d ¢ t d ¢ t d t d t

A* 15 1.29 17 6.02

[9] 35 18 1072 35 18 107* 105 107* 138 107

[3] 33 18 107° 31 14 1072 49 1072 120 1072

KG, A* 26 11 227 28 9 073 44 6.16 129 2.01

KG, Beam 1000 27.3 12.6 0.46 28.6 9.9 0.13 47 574 113 19.39
KG, Beam 500 27.6 12.1 0.58 28.7 9.9 0.21 54 6.43 113 19.74
KG, Beam 100 28.4 129 0.22 29.710.8 0.12 60 1.84 115 4.79
KG, Beam 50 28.8 13.2 0.15 30 11.2 0.09 76 110 115 2.73

Table 2. Average edit distance (d), average error (€) and average time in seconds (%)
for each method and each dataset (KG = our method).

Alkane
Acyclic
MAO
PAH

| | | |
0 1 2 3 4 5

Fig. 2. Gain in accuracy compared to Riesen [9] obtained for each dataset versus
the size of considered paths (k). Smashed lines represent the gain using beam search
algorithm instead of A* algorithm.

PAH datasets since it requires too much time to be computed. First, we can note
that our approaches require higher computational times with respect to other
approximation frameworks. This observation is coherent with the fact that we
have to compute, for each pair of nodes to be matched, a graph edit distance
between rather large graphs when k is equals to 3 or 4. In addition, compu-
tation times obtained for line 3 corresponds to a Matlab/C++ implementation
whereas other lines have been computed using a Java implementation [10]. The
results shown in these two tables show the gain in accuracy induced by using
k-subgraphs to compute a matching cost between nodes instead of using direct
neighbourhood [9] or k-walks [3]. In addition, we can note that taking into ac-
count a large radius for k-subgraphs increases the accuracy of our edit distance
approximations (Figure 2). Conversely to the observation stated in [3], in our
framework, considering a large radius does not induce irrelevant patterns and
thus the accuracy does not decrease. The decrease in gain accuracy observed for

10 Vincenzo Carletti’, Benoit Gaiizére', Luc Brun*, and Mario Vento!

smashed lines for larger k is due to the fact that the limit on the number of
states does not allow to find an optimal edit path. This may occur more often
as the number of possible edit paths increases.

6 Conclusion

In this article, we have proposed a new heuristic to enhance the approximation
of graph edit distance using the framework based on optimal bipartite graph
matching. Our proposition aims to use less local and more discriminant sub
structures, called k-subgraphs, associated to each node. Despite the high com-
putational time induced by our proposition, our approach is still less time con-
suming than computing an exact graph edit distance and we obtain a better
approximation accuracy than previous methods, hence showing the relevancy of
considering larger and exact patterns with respect to previous propositions.

References

1. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
Pattern Recognition. International Journal of Pattern Recognition and Artificial
Intelligence 18(3), 265-298 (2004)

2. Foggia, P., Percannella, G., Vento, M.: Graph Matching and Learning in Pattern
Recognition on the last ten years. Journal of Pattern Recognition and Artificial
Intelligence 28(1) (2014)

3. Gaiizere, B., Bougleux, S., Riesen, K., Brun, L.: Approximate Graph Edit Distance
Guided by Bipartite Matching of Bags of Walks. In: Structural, Syntactic and
Statistical Pattern Recognition, Lecture Notes in Computer Science, vol. 8621, pp.
73-82. Springer (2014)

4. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node
attribute statistics. Pattern Recognition 45(9), 3072-3083 (2012)

5. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recognition 36(10), 2213 — 2230 (2003)

6. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32-38 (1957)

7. Neuhaus, M., Riesen, K., Bunke, H.: Fast suboptimal algorithms for the com-
putation of graph edit distance. In: Structural, Syntactic and Statistical Pattern
Recognition, pp. 163-172. Springer (2006)

8. Ramon, J., Géartner, T.: Expressivity versus efficiency of graph kernels. In: First
International Workshop on Mining Graphs, Trees and Sequences. pp. 65-74 (2003)

9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image and Vision Computing 27, 950-959 (2009)

10. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit
distance computation. In: Graph-based Representations in Pattern Recognition,
LNCS, vol. 7877, pp. 142-151. Springer (2013)

11. Riesen, K., Fischer, A., Bunke, H.: Improving Approximate Graph Edit Distance
Using Genetic Algorithms. In: Structural, Syntactic and Statistical Pattern Recog-
nition, Lecture Notes in Computer Science, vol. 8621, pp. 63-72. Springer (2014)

