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The study of reaction–diffusion processes is much more compli-
cated on general curved surfaces than on standard Cartesian
coordinate spaces. Here we show how to formulate and solve
systems of reaction–diffusion equations on surfaces in an ex-
tremely simple way, using only the standard Cartesian form of
differential operators, and a discrete unorganized point set to rep-
resent the surface. Our method decouples surface geometry from
the underlying differential operators. As a consequence, it becomes
possible to formulate and solve rather general reaction–diffusion
equations on general surfaces without having to consider the com-
plexities of differential geometry or sophisticated numerical analy-
sis. To illustrate the generality of the method, computations for
surface diffusion, pattern formation, excitable media, and bulk-
surface coupling are provided for a variety of complex point
cloud surfaces.

closest point method | embedding method | Laplace–Beltrami

Partial differential equations (PDEs) are widely used to de-
scribe continuum processes such as diffusion, chemical reac-

tions, fluid flow, or electrodynamics. In standard 3D settings, these
take a familiar PDE form, such as a reaction–diffusion equation:

∂u
∂t

=
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

+ f ðuÞ;

and the ways to numerically solve such equations are well-
developed. The basic approach can be quite simple, such as laying
down a uniform Cartesian grid of points, fxi;j;k : 1≤ i; j; k≤Ng,
and using simple, familiar approximations of the differential terms
on this grid, such as:

∂2u
∂x2

≈
ui−1;j;k − 2ui;j;k + ui+1;j;k

h2
;

where ui;j;k ≈ uðxi;j;kÞ and h is the uniform grid spacing. As a result,
it is very easy to implement methods for the numerical solution
of such equations to study the phenomena of interest. To achieve
efficiency for large-scale computations, more advanced methods
are required, such as implicit discretization and solvers for sys-
tems of equations. These solvers, while internally complex, have
been implemented in standard, well-validated numerical routines
and are accessible through numerical subroutine libraries.
Important physical processes also arise in complex geometrical

settings, such as on complicated surfaces in three dimensions. The
abstract form of differential operators on surfaces remains the
same as in 3D, however, when explicitly expressed in coordinates,
the formulas for the operators and the corresponding discretized
expressions are relatively complicated and have received much
less attention. Moreover, in practical settings, surfaces are often
defined simply as a set of points—a point cloud—sampled from
the underlying surface. Because the connectivity of the points is
not provided, this adds further complexity to methods that need
to reconstruct the geometric properties of the surface, such as the
metric distance.
Here we present a method for solving reaction–diffusion equa-

tions on a point cloud that represents the underlying surface—or

any other geometric object—in a way that reduces the problem
to working with entirely standard classical 3D discretizations
and solver libraries. Our approach is fundamentally different
from other recent methods for computing point clouds (e.g.,
refs. 1, 2), in that it does not make assumptions on the codi-
mension of the set upon which we compute, nor does it ever
construct the local connectivity between points (cf. ref. 2). A
more detailed comparison with other methods is provided in the
Discussion section.
The article unfolds as follows: We begin by introducing the

problem and reviewing some recent results that are relevant for
our method. An algorithm for solving diffusion on point cloud
surfaces is developed by formulating the surface PDE problem
in the embedding space and by giving a convolutional dis-
cretization of the corresponding equations. Numerical experi-
ments are provided to explore the accuracy and stability of the
method. An extension to reaction–diffusion equations is de-
veloped, and some experiments on systems are provided. The
article concludes by contrasting the method to some of the
others available, and outlining generalizations and directions for
future work.

Diffusion Intrinsic to a Surface
We develop the method first for the fundamental case of pure
diffusion.
Consider evolving a scalar diffusion process on a smooth

surface S. The corresponding PDE is, formally:

ut =∇2
Su; [1]

where the right-hand side involves the Laplacian intrinsic to
the surface, also known as the Laplace–Beltrami operator. This
generalizes the standard Laplacian, an operator with a well-
known Cartesian coordinate formula, to a surface. We assume
that in practice we do not know S; instead, we are given a dis-
crete, unconnected set of points C which sample S (perhaps
even including noise; i.e., error in point positions relative to
the true geometry). We seek a method that solves Eq. 1 without
explicitly constructing an approximation to S from the point
cloud C, and which uses only knowledge of how to express and
solve the standard 3D diffusion equation in standard 3D
Cartesian space.

Continuous Formulation in the Embedding Space. Our first step to
formulating a method is to replace the surface PDE by a related
equation posed on the surrounding 3D space that can be solved
using standard Cartesian grid methods in 3D. When restricted to
the surface, this 3D embedding equation will give the solution to
the original surface problem. To obtain an intuition for the de-
sign of this equation, consider a function u defined on a smooth
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surface. The function umay be extended to a 3D neighborhood of
the surface by extending its value constant along the normal
directions to the surface. The 3D gradients of this extended func-
tion agree with the surface gradients of the surface function at the
surface, since the only 3D variation is along the surface. Expressing
this intuition mathematically leads to the following fundamental
principle (3):
1. Equivalence of gradients. Suppose u is any function defined on R3

that is constant along directions normal to the surface. Then, at
the surface:

∇u=∇Su;

where ∇S denotes the intrinsic surface gradient [specifi-
cally, ∇Su is the tangent vector to the surface defined by
∇Su≡∇u− n̂ðn̂ ·∇uÞ, where n̂ is a unit normal to the surface].
Similarly, a flux that is everywhere directed along the surface

can only spread out within the surface directions. This gives us
our second fundamental principle (3):
2. Equivalence of divergence. Suppose v is any vector field on R3 that
is tangent at S, and also tangent at all surfaces displaced by
a fixed distance from S (i.e., all surfaces defined as level sets of
the distance function to S). Then, at the surface:

∇ · v=∇S · v:

In fact, a version of this principle is true even if the vector field v
is not tangent to S (4).
In both instances, we observe that derivatives intrinsic to the

surface may be computed in 3D by extending quantities off the
surface along the normal directions emanating from the surface.
Our approach for numerically approximating PDEs on surfaces,
the closest point method (3), evaluates derivatives using these
fundamental principles and a “closest point function” represen-
tation of the surface S: for a point x in space, let cpSðxÞ be the
point belonging to S that is closest to x. Notice that the constant
normal extension may be efficiently evaluated by interpolation at
the closest point on the surface, and that the closest point rep-
resentation makes sense for any point set S, not just a continuous
surface. The latter property is what will give our approach its
geometric generality to point clouds.
Combining these results gives the following theorem for

evaluating the Laplace–Beltrami operator using only the classical
3D Cartesian Laplacian and the closest point function (3):

Theorem 1. LetS be a smooth surface inR3 and u : S→R be a smooth
function. Let cpSðxÞ be the closest point function for S. Then:

∇2
SuðxÞ=∇2uðcpSðxÞÞ  for x∈S: [2]

In addition, this remains true in the general case where S is
a smooth object of dimensions k≤ d in Rd, such as for a filament
(k= 1) in R3 (3, 4).
The right-hand side of Eq. 2 is well-defined for a surface S

because uðcpSð · ÞÞ is a function on R3 over which the standard
Laplacian is defined. A consequence of this is that Eq. 2 will
provide a generalization of the Laplace operator to point clouds,
as well as a practical means of computing the corresponding
diffusion flows.
Applying Eq. 2 to the surface PDE (Eq. 1) yields the explicit

closest point method for solving the surface PDE in the embed-
ding space. In its simplest form, the method alternates two steps.
First, quantities on the surface are extended into the embedding
space using the closest point operator:

v= uðcpSÞ: [3]

Next, a short-time evolution of the corresponding PDE in 3D is
carried out:

ut =∇2u; [4]

starting from the extended variable, v. For a small time, the solu-
tion of this embedding equation gives the desired approximation
of the underlying surface flow (Eq. 1) on the surface S.
To illustrate the intuition behind the method, consider a surface

process that is driven by diffusion. Suppose the evolving function is
artificially extended to all of R3 by making it constant along the
normal directions off the surface. We then apply standard 3D
diffusion to the extended function for a short time dt. Intuitively,
the fully 3D diffusion is driven by in-surface gradients since the
extended function does not vary normal to the surface. This implies
that the method will carry out the desired in-surface flow, at least
for the short time scale of interest. Note that the leading order term
in the error is OðdtÞ since the second derivative of u normal to the
surface is only guaranteed to be zero initially; at later times, it will
vary linearly with dt.
As noted, the closest point method is valid for smooth surfaces

of any codimension embedded in Rd. In particular, in R3, it
applies to 2D surface diffusion as well as 1D diffusion along
a filament. It is even valid for solid regions since Eqs. 3 and 4
reduce to the standard heat equation in Rd when applied to a
d-dimensional subset of Rd. Because the extension procedure is
well-defined and easily performed even if the surface is simply
represented as a point cloud, and because the evolution takes
place in standard 3D, the method retains the same simplicity no
matter how complex the surface or point set on which the prob-
lem is posed. The discretization of the method that we develop
preserves this geometric flexibility, and ultimately yields methods
that are independent of the dimensionality of the underlying
point cloud set.

Discretization of the Embedding Equation. The closest point method
must be discretized in time and space. To construct the dis-
cretization, it is crucial to note that we do not have S; instead, we
have a point cloud approximation C of the surface. Consequently,
we may assume that the easily computed cpCðxÞ is available, but
not cpSðxÞ. Specifically, let cpCðxÞ be the point belonging to the setC that is closest to x.
To carry out the first step in the closest point method, we

make a direct replacement of cpSðxÞ by cpCðxÞ in Eq. 3. That is,
the constant normal extension is carried out by replacing u in the
embedding space by the value at the closest point in the point
cloud, uðcpCðxÞÞ. Similar to refs. 3, 5, we carry out this step on
a uniform grid with spacing h in a dimension-by-dimension
fashion using standard polynomial interpolation of degree p≥ 3.
In refs. 3, 5 standard finite differences are used in the second

step of the closest point method to discretize the 3D diffusion
flow (Eq. 4). Unfortunately, this gives poor accuracy and is not
recommended except for very dense point clouds. To see this,
observe that uðcpCðxÞÞ= uðcpSðxÞÞ+OðδÞ on the surface for
a smooth uð·Þ where δ is the maximum distance between an ar-
bitrary point on the surface and its closest point in the point cloud.
Forming the discrete Laplacian amplifies the error by a factor of
1=h2, where h is the mesh spacing, potentially leading to an
Oðδ=h2Þ error at each time step.
To avoid the amplification of errors arising in a standard finite

difference approach, we discretize the 3D diffusion flow (Eq. 4)
convolutionally; that is, we convolve the extended function with
a kernel corresponding to diffusion for a short time dt. The
convolution is evaluated in Fourier space via the fast Fourier
transform (FFT). We remark that to apply our discretization the
problem must have a convolutional form and the corresponding
convolution kernel should be accurately approximated using the
discrete Fourier basis. This article focuses on flows involving
diffusion and we note that there will be situations where our
discretizations do not apply (e.g., pure convection).
In a typical point cloud calculation, we are given a cloud of

points and choose a suitable time step-size dt. Normally, the time
step-size should be chosen so that the effective width of the
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diffusion kernel (namely 2
ffiffiffiffi
dt

p
) exceeds the distance between

points in the cloud. If this condition is violated, diffusion is in-
sufficiently evolved to cause the desired coupling between
neighboring points and the method assumes that there is a hole
in the surface. We may quantify this condition by assigning
a measure μ to the point cloud spacing:

μ= max
i

min
j≠i

��pi − pj
��
2
; [5]

where the points pi; 1≤ i≤M define a cloud of M points. With
this measure of spacing, we see that we want to choose dt such
that 2

ffiffiffiffi
dt

p
> μ. The grid spacing h is determined from dt. Spe-

cifically, we select a mesh that is sufficiently refined to ensure
that the error arising from truncating the corresponding Four-
ier series is exponentially small. This leads us to the requirement
h2
4dt � 1, which is a standard choice in spectral convolution (6).
Estimates of the errors arising from one step of the method

may now be formally computed. We have already seen that
alternating diffusion for a time dt with constant normal ex-
tension leads to an Oðdt2Þ error after one time step of size dt.
The replacement of cpSðxÞ by cpCðxÞ in Eq. 3 introduces an
OðδÞ error into the approximation of v. Interpolation with
degree-p polynomials introduces an additional Oðhp+1Þ error
into the approximation of v. Using p≥ 3 and h2

4dt � 1, we find
that this interpolation error is Oðdt2Þ. Finally, errors arise
from truncating the Fourier series. These are exponentially
small relative to the other errors induced by the method
provided h2

4dt � 1.

Methods. The closest point function is constructed using the
k-nearest neighbors algorithm. An implementation of this step in
the high-level language MATLAB is given by:

ind= knnsearchðPT CLOUD; ½Xð:Þ Yð:Þ Zð:Þ�Þ;
CPx= reshapeðPT CLOUDðind; 1Þ;  sizeðXÞÞ;
CPy= reshapeðPT CLOUDðind;  2Þ;  sizeðYÞÞ;
CPz= reshapeðPT CLOUDðind;  3Þ;  sizeðZÞÞ;

where PT_CLOUD is an M × 3 matrix defining a cloud of M
points in 3D; X, Y, Z are matrices specifying the x; y; z coordi-
nates of the grid nodes; and CPx, CPy, CPz are the correspond-
ing coordinates of the closest points in the point cloud.
To evolve diffusion on point cloud surfaces, we alternate two

steps. The first step extends values off the surface into a 3D
region surrounding the surface using tricubic interpolation. This
step can be implemented in MATLAB using:

V= interp3
�
X;Y;Z;U;CPx;CPy;CPz; ‘cubic’

�
;

The second step simply evolves the corresponding 3D PDE in
a neighborhood of the surface. In MATLAB, this can be accom-
plished on a uniform lattice using:

U= ifftnðK hat :* fftnðVÞÞ;

where convolution is carried out using K_hat, the discrete
Fourier transform of the diffusion kernel. Note that fftn and
ifftn are the standard 3D Fourier transform and inverse Fourier
transform in MATLAB. Thus, the only difference between this
code and a standard one for solving diffusion equations in 3D
is the constant normal extension of the quantity U preceding
each time step. In our code we compute the K_hat matrix ana-
lytically; for example, on a cube of side length L with a grid of
Nx=L=h points in each direction, diffusion coefficient D, and
step size dt, we have:

k= fftshiftðð2 * pi=LÞ * ½−Nx=2 : Nx=2-1�Þ;
½kx; ky; kz�=meshgridðk; k; kÞ;
K hat= expð-ðkx:̂ 2+ ky:̂ 2+ kz:̂ 2Þ *D * dtÞ;

In this work, we use a uniform grid of the embedding space R3.
This approach is simple and makes direct use of the built-in
MATLAB functions for cubic interpolation and FFTs. For im-
proved efficiency, interpolation can be carried out in a band
around the surface since the diffusion kernel becomes expo-
nentially small outside of its effective width (see refs. 3, 5 for
localization techniques for the finite difference case). Further-
more, the convolution step may be accelerated using the fft() and
ifft() functions on a graphics processing unit. Even with these
enhancements, some computations will remain computationally
expensive. For example, it is expensive to apply this discretiza-
tion to a PDE on a surface that is embedded in four or more
dimensions. It may also be inefficient to compute on a uniform
discretization of space if the point cloud sampling of the underlying
surface is highly nonuniform. For such problems, alternative
methods for evaluating the convolutions are needed. A particularly
promising approach is to evaluate convolutions by a suitable spatial
quadrature formula, and compute the subsequent discrete sums by
the fast Gauss transform (7, 8). This fast convolution technique
requires only OðNÞ operations per time step, where N is the
number of grid nodes forming the discretization.

Numerical Experiment. We consider an initial value problem for
diffusion on the unit sphere with exact solution uðθ; η; tÞ=
expð−2tÞcosðηÞ in spherical coordinates ðr; θ; ηÞ.
The evolution is carried out on a point cloud defined by the

method of Saff and Kuijlaars (9). This method places nodes along
a spiral in such a way that the distance between nodes along the
spiral is approximately equal to the distance between the coils of
the spiral. Using cubic interpolation, the max norm relative errors
at Tf = 0:1 are computed for a variety of point clouds. This yields
the results reported in Table 1. Our experiments measure the
point cloud spacing using the value μ given by Eq. 5. This con-
vergence test indicates a first order error in μ, and shows that the
regularity of the error improves as the discretization parameters
dt and h are refined.

Reaction–Diffusion Intrinsic to a Surface
Many surface processes are modeled by systems of reaction–
diffusion equations. For illustrative purposes, this article con-
siders systems of two equations:

ut = f ðu; vÞ+Du∇2
Su; vt = gðu; vÞ+Dv∇2

Sv:

Applying a forward Euler discretization for the reaction terms
and a backward Euler discretization for the diffusion terms yields:

un+1 = un + dt · f ðun; vnÞ+ dt ·Du∇2
Su

n+1

vn+1 = vn + dt · gðun; vnÞ+ dt ·Dv∇2
Sv

n+1 :

This decouples the equations for un+1 and vn+1. Similar to the
scalar diffusion case, we alternate between a convolutional

Table 1. Max norm relative errors for the heat equation on
a sphere.

μ h=1=16;dt= Tf=8 h=1=64;dt =Tf=16

0.11025 0.0622 0.0728
0.05585 0.0346 0.0326
0.02792 0.0154 0.0152
0.01401 0.0087 0.0075
— — —

0 0.0021 0.0010
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discretization and a reextension using tricubic interpolation.
In MATLAB, the system can be evolved to time N · dt using:

for i= 1 :N
 U = ifftnðKu hat :* fftnðU+ dt * fðU;VÞÞÞ;
 V = ifftnðKv hat :* fftnðV+ dt * gðU;VÞÞÞ;
  U= interp3

�
X;Y;Z;U ;CPx;CPy;CPz; ‘cubic’

�
;

  V= interp3
�
X;Y;Z;V ;CPx;CPy;CPz; ‘cubic’

�
;

end

where Ku_hat and Kv_hat are the discrete Fourier transforms of
the diffusion kernels for ut =Du∇2

Su and vt =Dv∇2
Sv, respectively.

As in the scalar diffusion case, X, Y, Z are matrices specifying the
x; y; z coordinates of the grid nodes, and CPx, CPy, CPz are the
corresponding coordinates of the closest points in the point cloud.

Patterns on Surfaces. Fig. 1 displays the result of a computation
for the Gray–Scott model (10) for pattern formation (11). This
model has reaction terms: f ðu; vÞ= − uv2 +Fð1− uÞ;  gðu; vÞ=
uv2 − ðF + kÞv: The parameters are chosen to be F = 0:054,
k= 0:063, Du = 1=8100, and Dv =Du=2. The computation starts
with a perturbation of the steady-state values of u and v localized
near the right of the Drosophila embryo, and continues until
t= 7; 000. By choosing this as our final time, we stop the evolu-
tion before the entire surface is covered in stripes. The Dro-
sophila embryo surface (12) consists of 5,709 cells, which form
a point cloud about four units long. We discretize using a
120× 48× 48 lattice on a 5× 2× 2 box and select a time step-size
of dt= 10. In our visualization, each point in the point cloud is
represented by a small sphere colored according to the value of
the solution u.
Fig. 2 also shows pattern formation, in this case for the

Brusselator (13), a model that has reaction terms: f ðu; vÞ=
a− ðb+ 1Þu+ u2v;  gðu; vÞ= bu− u2v: To give interesting steady
patterns, the parameters are chosen to be a= 3, b= 10:2,
Du = 21=6; 480, and Dv = 50=6; 480. The initial conditions are
perturbations around the steady state. The sea shell is a surface
represented by a cloud of 39,733 points (14), and is about 2.2
units wide. A lattice of 32× 48× 24 points and a time step-size of
0.1 is used. In this example and the excitable media example be-
low, visualizations are obtained using MATLAB’s trisurf() command
and a known triangulation. We emphasize, however, that a tri-
angulation is not used in the PDE solver itself. Note that effective
visualization methods are available when surface triangulations
are unavailable (see ref. 15 for some examples). It is also possible
to perform real-time ray-casting on the closest point representa-
tion of the surface cpS (16), although we have not explored this
option for point clouds using cpC.

Patterns on Solid Objects. Fig. 3 displays another result for the
Brusselator model with these same choices of parameters and
initial conditions. However, the point cloud in this example consists
of points selected randomly between spheres of radii 0.5 and 1. The
same code is used for this 3D solid region computation as for our

2D surface computations. Zero flux boundary conditions naturally
arise, an effect that leads to stripes intersecting the boundaries at
about 90°. Dirichlet boundary conditions may alternatively be im-
posed; for such problems, the known boundary values are propa-
gated out as part of the extension step. The analytical form of the
shape is not used to compute the solution; it is only used as part of
the visualization. A 200× 200× 200 lattice is used with a time step-
size of 0.1.
This example considers a reaction–diffusion equation with

homogeneous Neumann boundary conditions on a densely sam-
pled 3D spherical shell. Suppose we consider the corresponding
family of problems on solid spherical shells that vary by thickness.
In the limit as the thickness tends to zero, we obtain a reaction–
diffusion equation intrinsic to a sphere. It is interesting to note
that our approach can compute the solution to this entire family
of problems, including the limiting case on a sphere, with the
same code and without imposing any assumptions on the di-
mensionality of the object upon which we compute.

Excitable Media. Fig. 4 is the result of a computation for the
Fitzhugh–Nagumo model (17, 18), which is a model for excit-
able media (19). This model has reaction terms: f ðu; vÞ=
ða− uÞðu− 1Þu− v;   gðu; vÞ= eðβu− γv− δÞ: To obtain traveling
waves, appropriate parameters and initial conditions must be used.
We take a= 0:1; e= 0:015; β= 0:5; γ = 1:0; δ= 0;Du = 1:44× 10−4
and Dv = 3:6× 10−6. For initial conditions, the variable u is set
equal to 1 for x; y; z> 0 and 0 elsewhere, while v is set equal to 1
for x< 0; y> 0; z> 0 and 0 elsewhere. The surface, the iconic heart
(20), is represented by a point cloud of 57,346 points. It is centered
at the origin and is about 2.15 units in height. A lattice of
160× 160× 160 points with a time step-size of 0.875 is used.

Bulk Coupling. Our method also solves surface reaction–diffusion
equations that are coupled to processes occurring in the bulk
surrounding space. Typically, the surface is coupled to the bulk
through the boundary conditions of the bulk equation.
Suppose we have two species, each of which is present both in

the bulk and on the surface. Further, suppose that each species
can transfer between the surface and bulk via adsorption and
desorption. Such situations arise, for example, when studying
surfactants (21) or cell-level processes (22). We denote the con-
centrations of the species on the surface by u and v and the
corresponding concentrations in the bulk by U and V. A possible
model describing this type of behavior is:

ut = f ðu; vÞ+Du∇2
Su− α1u+ β1U;  on S;

vt = gðu; vÞ+Dv∇2
Sv− α2v+ β2V ;  on S;

Ut = f ðU;V Þ+DU∇2U;  in Ω;
Vt = gðU;V Þ+DV∇2V ;  in Ω;

[6]

with coupling boundary conditions:
Fig. 1. A Turing pattern on a point cloud Drosophila embryo surface
(5,709 points).

Fig. 2. A Turing pattern on a point cloud sea shell (39,733 points).
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DU
∂U
∂n

= α1u− β1U;   DV
∂V
∂n

= α2v− β2V ;   on S: [7]

Here ∂
∂n represents the normal derivative outward from the bulk

at the surface. The adsorption and desorption between the sur-
face and bulk is controlled by the α and β parameters.
Fig. 5 shows an example computation where the surface is the

Drosophila embryo from before but now coupled to an inner bulk
process. Portions of the surface have been cut away in the vi-
sualization to show the bulk solution in the interior. Here the
dynamics are the Schnakenberg process (23) for spot formation:
f ðu; vÞ= γða− u+ u2vÞ and gðu; vÞ= γðb− u2vÞ. For parameter
values, we use γ = 30, a= 1=10, b= 9=10, Du =DU = 1=12,
Dv =DV = 1, α1 = β1 = 5=12, and α2 = β2 = 5. The coupled
Drosophila system is embedded inside a 5× 2:5× 2:5 box that we
discretize using a 240× 120× 120 grid. Note that because the
surface process is implemented on a regular Cartesian grid in
3D, we reuse this grid for the bulk process.
As in all of our examples, the numerical computation consists

of alternating between two steps. The second step simply evolves
u; v;U and V for one time-step using the same convolution-based
technique as our previous examples. The first step extends the
various quantities throughout the computational domain. For
the quantities u and v, this extension is simply uðcpCÞ and vðcpCÞ
as before. For the first two equations in Eq. 6, we also need the
value of the bulk quantities evaluated on the surface, but ex-
tended to the computational domain; these are UðcpCÞ and
V ðcpCÞ. For the latter two equations in Eq. 6, no extension is
required for grid points in the interior of the Drosophila embryo.
For grid points outside the Drosophila embryo, the values must
be extended in such a way as to satisfy the coupling boundary
conditions (Eq. 7). Using the extensions already computed

above, we approximate the surface values and the normal de-
rivative as follows:

DU
UðxÞ−UðcpCÞ
kx− cpCk2

= α1uðcpCÞ− β1UðcpCÞ;

where we have approximated ∂U
∂n using a finite difference in the

normal direction. We then rearrange this formula for UðxÞ to
define our extension for U when x is an exterior point (U is left
unchanged for interior points). This process is essentially an ex-
trapolation based on the value of the normal derivative given on
the surface to points off the surface. Unlike in the previous exam-
ples, this model requires knowledge of which grid points are inside
of the surface and which are outside. For a simple surface such as
the Drosophila embryo, we determine the interior by compar-
ing the grid point x, its closest point cpCðxÞ, and the centroid of
the point cloud. More sophisticated procedures to determine
orientation may be necessary for complex geometry.
More generally, there could be bulk concentrations both in-

side and outside the surface. In such models, knowledge of the
orientation of the surface is crucial to correctly approximate the
coupling boundary conditions. Our approach to such problems
assigns an orientation by splitting a bulk concentration U into
two (global) quantities: U1 (the inner concentration) and U2 (the
outer concentration).

Discussion
We now contrast the present approach with the other methods
that have been developed for solving PDEs on surfaces. While
most of these other methods do not immediately extend to point
clouds, they could generally be used if the point cloud were first
reconstructed into a suitable surface representation, a process
that can be highly complex.
The first, and potentially most efficient, broad class of nu-

merical methods for solving PDEs on surfaces are parameteri-
zation methods. These methods explicitly parameterize the
surface by a smooth function of twoCartesian coordinates, α and β.
Writing out the PDEs in terms of α- and β-derivatives and metric
coefficients results in complicated formulas and, typically, singu-
larities that require special care (24). To handle complex geom-
etries and avoid such singularities, local patch approximations,
such as splines, must be constructed that cover the entire surface
as a collection of local smooth coordinate systems. This results in
substantial organizational complexity. Note, however, there are
recent methods that work on point clouds by performing the pa-
rameterization locally for each point in the cloud, using the
nearest neighbors and a moving least squares problem (1). The
second broad class of methods for solving PDEs on complex
surfaces is to approximate the surface by a polyhedral tri-
angulation, and use a finite element or finite volume type of
method to discretize the equations (25, 26). In the case where
only a point cloud is provided, these methods require an in-
termediate step of constructing a numerically well-behaved tri-
angulation of the point cloud, which can be a considerable
challenge for complex surfaces. Furthermore, discretizing and
solving PDEs on such polyhedral grids can be deceptively difficult
to implement, as described in ref. 26. The third and final broad
class of methods are the embedding methods, which solve the
surface PDEs in some 3D region encompassing the surface, using
standard Cartesian-grid methods (3, 27–32). These methods do
not use the metric tensor on the surface, thus eliminating one of
the major technical complexities of working with PDEs on sur-
faces. However, embedding methods typically alter the surface
PDEs and introduce artificial boundary conditions in sophisti-
cated ways to extend the problem to a 3D neighborhood of the
surface. Traditional embedding methods also require some
continuous surface representation, typically the zero-level set of
a smooth function defined on all of space (as in the level set
method), rather than a point cloud. The accurate and efficient
construction of such representations of the surface is a challenge

Fig. 3. A Turing pattern on a point cloud representing the 3D region between
spheres of radii 0.5 and 1 (∼800,000 randomly placed points form the point
cloud). To visualize the result, we have cut away one-fourth of the region.

Fig. 4. Fitzhugh–Nagumo waves of excitation (dark green) computed on
the surface of the iconic heart (defined by 57,346 points).
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that remains a subject of current research interest, especially for
open surfaces, or surfaces of codimension-two or higher (33, 34).
The method presented here, the closest point method, belongs

to the general class of embedding methods, but distinguishes itself
in several major respects. In particular, the extended PDE for the
closest point method is just the classical 3D analog of the surface
PDE, a fact that enables the use of standard 3D discretizations.
Also, the representation of the surface (i.e., the closest point
function) is simple and robust, and it immediately extends beyond
surfaces to arbitrary point clouds, and thus directly to the input data
format. In the special case of pure diffusion, the present method
bears some similarity to the embedding method introduced by
Schwartz et al. (27). In particular, both methods rely on the fact
that under suitable conditions the solution to a standard 3D dif-
fusion equation provides a close approximation to the solution of
the surface diffusion equation. However, ref. 27 formulates the

problem using “cut cell” discretizations, the introduction of Neu-
mann boundary conditions, and sophisticated level-set PDE
methods for reconstructing the surface of interest as a level set
function. In contrast, the closest point method uses only a standard
Cartesian grid discretization, no boundary condition discretiza-
tions, and is based on the easily computed closest point
function. The last of these properties ensures that no surface
reconstruction is needed, and allows the method to be immedi-
ately generalized from surfaces to point clouds, and other more
general geometric objects (e.g., objects of mixed dimensions).
As we have seen, our method solves systems of reaction–

diffusion equations on surfaces. The surface representation can
be given as an unorganized point set, a property that makes the
method easy to implement for complex surfaces such as those
acquired from laser range scanners. Note, however, that the fun-
damental principles underlying the closest point method apply to
much more general PDEs. See, for example, refs. 3, 5, 35, where
the closest point method is used to solve an interesting variety of
PDEs on complex continuous surfaces. Our ongoing work for the
closest point method investigates solving general PDEs on general
point cloud surfaces using only classical 3D numerical methods
and solution routines. We anticipate that the development of
methods of this type should encourage powerful models of con-
tinuum processes on surfaces to be applied more widely, across
diverse sciences and in new research areas.
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