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Abstract. Domain adaptation is an important emerging topic in com-
puter vision. In this paper, we present one of the first studies of domain
shift in the context of object recognition. We introduce a method that
adapts object models acquired in a particular visual domain to new imag-
ing conditions by learning a transformation that minimizes the effect of
domain-induced changes in the feature distribution. The transformation
is learned in a supervised manner and can be applied to categories for
which there are no labeled examples in the new domain. While we focus
our evaluation on object recognition tasks, the transform-based adapta-
tion technique we develop is general and could be applied to non-image
data. Another contribution is a new multi-domain object database, freely
available for download. We experimentally demonstrate the ability of our
method to improve recognition on categories with few or no target do-
main labels and moderate to large changes in the imaging conditions.

1 Introduction

Supervised classification methods, such as kernel-based and nearest-neighbor
classifiers, have been shown to perform very well on standard object recognition
tasks (e.g. [4], [17], [3]). However, many such methods expect the test images to
come from the same distribution as the training images, and often fail when pre-
sented with a novel visual domain. While the problem of domain adaptation has
received significant recent attention in the natural language processing commu-
nity, it has been largely overlooked in the object recognition field. In this paper,
we explore the issue of domain shift in the context of object recognition, and
present a novel method that adapts existing classifiers to new domains where
labeled data is scarce.

Often, we wish to perform recognition in a target visual domain where we
have very few labeled examples and/or only have labels for a subset of cat-
egories, but have access to a source domain with plenty of labeled examples
in many categories. As Figure 1 shows, it is insufficient to directly use object
classifiers trained on the source domain, as their performance can degrade signifi-
cantly on the target domain. Even when the same features are extracted in both
domains, and the necessary normalization is performed on the image and the
feature vectors, the underlying cause of the domain shift can strongly affect the
feature distribution and thus violate the assumptions of the classifier. Typical
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source domain target domain

(a)

train test SVM-bow NBNN [3]

source source 54 ± 2 61 ± 1
source target 20 ± 1 19 ± 1

(b)

Fig. 1. (a) Example of extreme visual domain shift. (b) Degradation of the performance
of two object classification methods (an SVM over a bag-of-words representation (SVM-
bow) and the Naive Bayes nearest neighbor (NBNN) classifier of [3]) when trained
and tested on these image domains (see Sec.4 for dataset descriptions). Classification
accuracy is averaged over 31 object categories, and over 5 random 80%-20% splits into
train/test data.

causes of visual domain shift include changes in the camera, image resolution,
lighting, background, viewpoint, and post-processing. In the extreme case, all
of these changes take place, such as when shifting from typical object category
datasets mined from internet search engines to images captured in real-world
surroundings, e.g. by a mobile robot (see Figure 1).

Recently, domain adaptation methods that attempt to transfer classifiers
learned on a source domain to new domains have been proposed in the lan-
guage community. For example, Blitzer et al. adapt sentiment classifiers learned
on book reviews to electronics and kitchen appliances [2]. In this paper, we ar-
gue that addressing the problem of domain adaptation for object recognition
is essential for two reasons: 1) while labeled datasets are becoming larger and
more available, they still differ significantly from many interesting application
domains, and 2) it is unrealistic to expect the user to collect many labels in
each new domain, especially when one considers the large number of possible
object categories. Therefore, we need methods that can transfer object category
knowledge from large labeled datasets to new domains.

In this paper, we introduce a novel domain adaptation technique based on
cross-domain transformations. The key idea, illustrated in Figure 2, is to learn
a regularized non-linear transformation that maps points in the source domain
(green) closer to those in the target domain (blue), using supervised data from
both domains. The input consists of labeled pairs of inter-domain examples that
are known to be either similar (black lines) or dissimilar (red lines). The output
is the learned transformation, which can be applied to previously unseen test
data points. One of the key advantages of our transform-based approach is that
it can be applied over novel test samples from categories seen at training time,
and can also generalize to new categories which were not present at training
time.

We develop a general framework for learning regularized cross-domain trans-
formations, and then present an algorithm based on a specific regularizer which
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(a) Domain shift problem (b) Pairwise constraints (c) Invariant space

Fig. 2. The key idea of our approach to domain adaptation is to learn a transforma-
tion that compensates for the domain-induced changes. By leveraging (dis)similarity
constraints (b) we aim to reunite samples from two different domains (blue and green)
in a common invariant space (c) in order to learn and classify new samples more ef-
fectively across domains. The transformation can also be applied to new categories
(lightly-shaded stars). This figure is best viewed in color.

results in a symmetric transform. This special case of transformations has pre-
viously been explored for metric learning, and we base the algorithm presented
in this paper on the information theoretic metric learning method of [8]. Met-
ric learning has been successfully applied to a variety of problems in vision and
other domains (see [6, 11, 14] for some vision examples) but to our knowledge has
not been applied to domain adaptation. In work subsequent to that reported in
this paper, we have developed a variant of our method that learns regularized
asymmetric transformations, which allows us to model more general types of
domain shift1.

Rather than committing to a specific form of the classifier, we only assume
that it operates over (kernelized) distances between examples. Encoding the
domain invariance into the feature representation allows our method to benefit
a broad range of classification methods, from k-NN to SVM, as well as clustering
methods. While we evaluate our technique on object recognition, it is a general
adaptation method that could be applied to non-image data.

In the next section, we relate our approach to existing work on domain adap-
tation and transfer learning. Section 3 describes our general framework for do-
main adaptation and presents an algorithm based on symmetric transformations,
i.e. metric learning. We evaluate our approach on a new dataset designed to
study the problem of visual domain shift, which is described in Section 4, and
show empirical results of object classifier adaptation on several visual domains
in Section 5.

2 Related Work

The domain adaptation problem has recently started to gain attention in the nat-
ural language community. Daume III [7] proposed a domain adaptation approach

1 See the technical report [15] for details of the method; for comparison results using
this method are shown in the tables below.
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B1     B2     B3           B4      B5

Fig. 3. Unlike category transfer methods, our method does not transfer structure be-
tween related tasks, but rather transfers the learned structure of the domain shift from
tasks labeled in both domains (e.g. tasks 1,2,3 and 5 in the figure) to tasks unlabeled
in the target domain (e.g. task 4), without requiring these tasks to be related.

that works by transforming the features into an augmented space, where the in-
put features from each domain are copied twice, once to a domain-independent
portion of the feature vector, and once to the portion specific to that domain.
The portion specific to all other domains is set to zeros. While “frustratingly”
easy to implement, this approach only works for classifiers that learn a function
over the features. With normalized features (as in our experimental results),
the nearest neighbor classifier results are unchanged after adaptation. Struc-
tural correspondence learning is another method proposed for NLP tasks such
as sentiment classification [2]. However, it is targeted towards language domains,
and relies heavily on the selection of pivot features, which are words that fre-
quently occur in both domains (e.g. “wonderful”, “awful”) and are correlated
with domain-specific words.

Recently, several adaptation methods for the support vector machine (SVM)
classifier have been proposed in the video retrieval literature. Yang et al. [18]
proposed an Adaptive SVM (A-SVM) which adjusts the existing classifier fs(x)
trained on the source domain to obtain a new SVM classifier f t(x). Cross-domain
SVM (CD-SVM) proposed by Jiang et al. [13] defines a weight for each source
training sample based on distance to the target domain, and re-trains the SVM
classifier with re-weighted patterns. The domain transfer SVM (DT-SVM) pro-
posed by Duan et al. [9] used multiple-kernel learning to minimize the difference
between the means of the source and target feature distributions. These meth-
ods are specific to the SVM classifier, and they require target-domain labels
for all categories. The advantage of our method is that it can perform transfer
of domain-invariant representations to novel categories, with no target-domain
labels, and can be applied to a variety of classifiers and clustering techniques.

Our approach can be thought of as a form of knowledge transfer from the
source to the target domain. However, in contrast to many existing transfer
learning paradigms (e.g. [16], [10], [12]), we do not presume any degree of relat-
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edness between the categories that are used to learn the transferred structure
and the categories to which the structure is transferred (see Figure 3). Individ-
ual categories are related across domains, of course; the key point is that we
are transferring the structure of the domain shift, not transferring structures
common to related categories.

Finally, metric and similarity learning has been successfully applied to a
variety of problems in vision and other domains (see [6, 11, 14, 5] for some vision
examples) but to our knowledge has not been used for domain adaptation.

3 Domain Adaptation Using Regularized Cross-Domain
Transforms

We begin by describing our general domain adaptation model in the linear set-
ting, then, in Section 3.1, show how both the linear and the kernelized version
of the particular case of a symmetric transform used in our experiments can be
implemented using the metric learning approach of [8].

In the following, we assume that there are two domains A and B (e.g., source
and target). Given vectors x ∈ A and y ∈ B, we propose to learn a linear trans-
formation W from B to A (or equivalently, a transformation WT to transform
from A to B). If the dimensionality of the vectors x ∈ A is dA and the dimen-
sionality of the vectors y ∈ B is dB , then the size of the matrix W is dA × dB .
We denote the resulting inner product similarity function between x and the
transformed y as

simW (x,y) = xTWy.

The goal is to learn the linear transformation given some form of supervision,
and then to utilize the learned similarity function in a classification or clustering
algorithm. To avoid overfitting, we choose a regularization function for W , which
we will denote as r(W ) (choices of the regularizer are discussed below). Denote
X = [x1, ...,xnA

] as the matrix of nA training data points (of dimensionality
dA) from A and Y = [y1, ...,ynB

] as the matrix of nB training data points
(of dimensionality dB) from B. We will discuss the exact form of supervision we
propose for domain adaptation problems in Section 3.1, but for now assume that
it is a function of the learned similarity values simW (x,y) (i.e., a function of the
matrix XTWY ), so a general optimization problem would seek to minimize the
regularizer subject to supervision constraints given by functions ci:

minW r(W )
s.t. ci(X

TWY ) ≥ 0, 1 ≤ i ≤ c. (1)

Due to the potential of infeasibility, we can introduce slack variables into the
above formulation, or write the problem as an unconstrained problem:

min
W

r(W ) + λ
∑

i

ci(X
TWY ).



6 Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell

In this paper, we focus on a special case of this general transformation learning
problem, one that employs a particular regularizer and constraints that are a
function of the learned distances2

dW (x,y) = (x− y)TW (x− y).

The regularizer we consider here is r(W ) = tr(W )− log det(W ). Note that this
regularizer can only be applied when the dimensionalities of the two domains are
equal (dA = dB). This choice of regularizer and constraints has previously been
studied as a Mahalanobis metric learning method, and is called information-
theoretic metric learning (ITML) [14]; we stress, however, that the use of such
a regularizer for domain adaptation is novel, as is our method for constructing
cross-domain constraints, which we discuss in Section 3.1. We call this approach
symm for short, since the learned transformation W is always symmetric positive
definite.

The fact that W is required to be symmetric may be overly restrictive for
some applications. We refer the reader to [15], where we develop an asym-
metric version of our domain adaptation model with the regularizer r(W ) =
1
2‖W‖

2
F and constraints that are functions of learned similarities simW (x,y).

This method, called asymm for short in this paper, can also handle the case
when dA 6= dB .

3.1 Domain Adaptation Using Metric Learning

In this section, we describe our specific algorithm in detail. In using symmetric
positive definite matrices, the idea is that the shift can be approximated as an
arbitrary linear scaling and rotation of the feature space. We aim to recover
this transformation by leveraging labeled data consisting of similarity and dis-
similarity constraints between points in the two domains. Since the matrix W
corresponding to the metric is symmetric positive semi-definite, we can think
of it as mapping samples coming from two different domains into a common
invariant space, in order to learn and classify instances more effectively across
domains. Note that by factorizing W as W = GTG, we can equivalently view
the distance dW between points x and y as (Gx − Gy)T (Gx − Gy); that is,
the distance is simply the squared Euclidean distance after applying the linear
transformation specified by G. The transformation G therefore maps data points
from both domains into an invariant space. Because a linear transformation may
not be sufficient, we optionally kernelize the distance matrix to learn non-linear
transformations.

Generating Cross-Domain Constraints Suppose that we want to recognize
a total of n categories (tasks), with training data from category i denoted as

2 Mathematically, to ensure that such constraints are a function of XTWY , we let
X = Y be the concatenation of data points in both domains. This is possible since
the dimensionalities of the domains are identical.
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Li and consisting of (x, l) pairs of input image observations x and category
labels l. There are two cases that we consider. In the first case, we have many
labeled examples for each of the n categories in the source domain data, LA =
LA
1 ∪ ...∪LA

n , and a few labeled examples for each category in the target domain
data, LB = LB

1 ∪ ... ∪ LB
n . In the second case, we have the same training data

LA, but only have labels for a subset of the categories in the target domain,
LB = LB

1 ∪ ... ∪ LB
m, where m < n. Here, our goal is to adapt the classifiers

trained on tasks m+1, ..., n, which only have source domain labels, to obtain new
classifiers that reduce the predictive error on the target domain by accounting
for the domain shift. We accomplish this by applying the transformation learned
on the first m categories to the features in the source domain training set of
categories m+ 1, ..., n, and re-training the classifier.

To generate the similarity and dissimilarity constraints necessary to learn the
domain-invariant transformation, we use the following procedure. We sample a
random pair consisting of a labeled source domain sample (xA

i , l
A
i ) and a labeled

target domain sample (xB
j , l

B
j ), and create a constraint

dW (xA
i ,x

B
j ) ≤ u if li = lj ,

dW (xA
i ,x

B
j ) ≥ ` if li 6= lj .

(2)

We call these class-based constraints, and we use this procedure to construct a
set S of pairs (i, j) of similarity constraints and D of dissimilarity constraints.
Alternatively, we can generate constraints based not on class labels, but on
information of the form “target domain sample xA

i is similar to source domain
sample xB

j ”. This is particularly useful when the source and target data include
images of the same object, as it allows us to best recover the structure of the
domain shift, without learning anything about particular categories. We refer to
these as correspondence constraints.

It is important to generate constraints between samples of different domains,
as including same-domain constraints can make it difficult for the algorithm to
learn the domain shift. In fact, we show experimentally that creating constraints
based on class labels without regard for domain boundaries, in the style of metric
learning, does considerably worse than our method.

Learning W using ITML As mentioned above, information-theoretic metric
learning (ITML) formulates the problem as follows:

min
W�0

tr(W )− log detW

s. t. dW (xA
i ,x

B
j ) ≤ u (i, j) ∈ S,

dW (xA
i ,x

B
j ) ≥ ` (i, j) ∈ D,

(3)

where the regularizer tr(W ) − log detW is defined only between positive semi-
definite matrices. This regularizer is a special case of the LogDet divergence,
which has many properties desirable for metric learning such as scale and rota-
tion invariance [8]. Note that one typically adds slack variables, governed by a
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tradeoff parameter λ, to the above formulation to ensure that a feasible solution
can always be found.

We follow the approach given in [8] to find the optimal W for (3). At each
step of the algorithm, a single pair (xA

i ,x
B
j ) from S or D is chosen, and an

update of the form

Wt+1 = Wt + βtWt(x
A
i − xB

j )(xA
i − xB

j )TWt

is applied. In the above, βt is a scalar parameter computed by the algorithm
based on the type of constraint and the amount of violation of the constraint.
Such updates are repeated until reaching global convergence; typically we choose
the most violated constraint at every iteration and stop when all constraints are
satisfied up to some tolerance ε.

In some cases, the dimensionality of the data is very high, or a linear trans-
formation is not sufficient for the desired metric. In such cases, we can apply
kernelization to the above algorithm in order to learn high-dimensional metrics
and/or non-linear transformations. Let X̄ = [X Y ] be the concatenated matrix
of data points from both domains. It is possible to show that the updates for
ITML may be written in terms of the kernel matrix by multiplying the updates
on the left by X̄T and on the right by X̄, yielding

Kt+1 = Kt + βtKt(e
A
i − eBj )(eAi − eBj )TKt,

where eAi is the standard basis vector corresponding to the index of xA
i and Kt =

X̄TWtX̄. K0 = X̄T X̄ corresponds to some kernel matrix over the concatenated
input data when we map data points from both domains to a high-dimensional
feature space. Furthermore, the learned kernel function may be computed over
arbtirary points, and the method may be scaled for very large data sets; see [8,
14] for details.

4 A Database for Studying Effects of Domain Shift in
Object Recognition

As detailed earlier, effects of domain shift have been largely overlooked in previ-
ous object recognition studies. Therefore, one of the contributions of this paper
is a database3 that allows researchers to study, evaluate and compare solutions
to the domain shift problem by establishing a multiple-domain labeled dataset
and benchmark. In addition to the domain shift aspects, this database also pro-
poses a challenging office environment category learning task which reflects the
difficulty of real-world indoor robotic object recognition, and may serve as a
useful testbed for such tasks. It contains a total of 4652 images originating from
the following three domains:

Images from the web: The first domain consists of images from the web
downloaded from online merchants (www.amazon.com). This has become a very

3 Available at http://www.eecs.berkeley.edu/~mfritz/domainadaptation/.
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Fig. 4. New dataset for investigating domain shifts in visual category recognition tasks.
Images of objects from 31 categories are downloaded from the web as well as captured
by a high definition and a low definition camera.

popular way to acquire data, as it allows for easy access to large amounts of
data that lends itself to learning category models. These images are of products
shot at medium resolution typically taken in an environment with studio lighting
conditions. We collected two datasets: amazon contains 31 categories4 with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the objects only from a canonical viewpoint.
amazonINS contains 17 object instances (e.g. can of Taster’s Choice instant
coffee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dslr has images of the 31 object cat-

4 The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, lap-
top, letter tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer,
projector, puncher, ring binder, ruler, scissors, speaker, stapler, tape, and trash can.
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egories, with 5 different objects for each, in an office environment. Each object
was captured with on average 3 images taken from different viewpoints, for a
total of 423 images. dslrINS contains 534 images of the 17 object instances,
with an average of 30 images per instance, taken in a home environment.

Images from a webcam: The third domain consists of images of the 31
categories recorded with a simple webcam. The images are of low resolution
(640x480) and show significant noise and color as well as white balance artifacts.
Many current imagers on robotic platforms share a similarly-sized sensor, and
therefore also possess these sensing characteristics. The resulting webcam dataset
contains the same 5 objects per category as in dSLR, for a total of 795 images.

The database represents several interesting visual domain shifts. First of all,
it allows us to investigate the adaptation of category models learned on the web
to dSLR and webcam images, which can be thought of as in situ observations
on a robotic platform in a realistic office or home environment. Second, domain
transfer between the high-quality dSLR images to low-resolution webcam im-
ages allows for a very controlled investigation of category model adaptation, as
the same objects were recorded in both domains. Finally, the amazonINS and
dslrINS datasets allow us to evaluate adaptation of product instance models
from web data to a user environment, in a setting where images of the same
products are available in both domains.

5 Experiments

In this section, we evaluate our domain adaptation approach by applying it to
k-nearest neighbor classification of object categories and instances. We use the
database described in the previous section to study different types of domain
shifts and compare our new approach to several baseline methods. First, we
detail our image processing pipeline, and then describe the different experimental
settings and elaborate on our empirical findings.

Image Processing: All images were resized to the same width and con-
verted to grayscale. Local scale-invariant interest points were detected using the
SURF [1] detector to describe the image. SURF features have been shown to be
highly repeatable and robust to noise, displacement, geometric and photometric
transformations. The blob response threshold was set to 1000, and the other pa-
rameters to default values. A 64-dimensional non-rotationally invariant SURF
descriptor was used to describe the patch surrounding each detected interest
point. After extracting a set of SURF descriptors for each image, vector quan-
tization into visual words was performed to generate the final feature vector.
A codebook of size 800 was constructed by k-means clustering on a randomly
chosen subset of the amazon database. All images were converted to histograms
over the resulting visual words. No spatial or color information was included in
the image representation for these experiments.

In the following, we compare k-NN classifiers that use the proposed cross-
domain transformation to the following baselines: 1) k-NN classifiers that operate
in the original feature space using a Euclidean distance, and 2) k-NN classifiers
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Table 1. Domain adaptation results for categories seen during training in the target
domain.

No shift Baseline Methods Our Method

domain A domain B knnAA knnAB knnBB ITML(A+B) ITML(B) asymm symm

webcam dslr 0.34 0.14 0.20 0.18 0.23 0.25 0.27

dslr webcam 0.31 0.25 0.23 0.23 0.28 0.30 0.31

amazon webcam 0.33 0.03 0.43 0.41 0.43 0.48 0.44

Table 2. Domain adaptation results for categories not seen during training in the
target domain.

Baseline Methods Our Method

domain A domain B knnAB ITML(A+B) asymm symm

webcam dslr 0.37 0.38 0.53 0.49

amazonINS dslrINS 0.23 0.25 0.30 0.25

that use traditional supervised metric learning, implemented using the ITML
[8] method, trained using all available labels in both domains. We kernelize
the metric using an RBF kernel with width σ = 1.0, and set λ = 102. As
a performance measure, we use accuracy (number of correctly classified test
samples divided by the total number of test samples) averaged over 10 randomly
selected train/test sets. k = 1 was used in all experiments.

Same-category setting: In this setting, each category has (a small number
of) labels in the target domain (3 in our experiments) For the source domain,
we used 8 labels per category for webcam/dslr and 20 for amazon.

We generate constraints between all cross-domain image pairs in the training
set based on their class labels, as described in Section 3.1. Table 1 shows the
results. In the first result column, to illustrate the level of performance without
the domain shift, we plot the accuracy of the Euclidean k-NN classifier trained
on the source domain A and tested on images from the same domain (knn AA).
The next column shows the same classifier, but trained on A and tested on B
(knn AB). Here, the effect of the domain shift is evident, as the performance
drops for all domain pairs, dramatically so in the case of the amazon to webcam
shift. We can also train k-NN using the few available B labels (knn BB, third
column). The fourth and the fifth columns show the metric learning baseline,
trained either on all pooled training data from both domains (ITML(A+B)), or
only on B labels (ITML(B)). Finally, the last two columns show the symmetric
variant of our domain adaptation method presented in this paper (symm), and
its asymmetric variant [15] (asymm). knn BB does not perform as well because
of the limited amount of labeled examples we have available in B. Even the
more powerful metric-learning based classifier fails to perform as well as the
k-NN classifier using our domain-invariant transform.

The shift between dslr and webcam domains represents a moderate amount
of change, mostly due to the differences in the cameras, as the same objects
were used to collect both datasets. Since webcam actually has more training
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Fig. 5. Examples where our method succeeds in finding images of the correct category
despite the domain shift. The large image on the right of each group is a webcam
query image, while the smaller images are of the 5 nearest neighbors retrieved from
the amazon dataset, using either the knn AB baseline in Table 1 (top row of smaller
images), or the learned cross-domain symm kernel (bottom row of smaller images).
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images, the reverse webcam-to-dslr shift is probably better suited to adaptation.
In both these cases, symm outperforms asym, possibly due to the more sym-
metric nature of the shift and/or lack of training data to learn a more general
tranformation. The shift between the amazon and the dslr/webcam domains is
the most drastic (bottom row of Table 1.) Even for this challenging problem, the
adapted k-NN classifier outperforms the non-adapted baselines, with asymm do-
ing better than symm. Figure 5 show example images retrieved by our method
from amazon for a query from webcam.

New-category setting: In this setting, the test data belong to categories for
which we only have labels in the source domain. We use the first half of the cate-
gories to learn the transformation, forming correspondence constraints (Section
3.1) between images of the same object instances in roughly the same pose. We
test the metric on the remaining categories. The results of adapting webcam to
dslr are shown in the first row of Table 2. Our approach clearly learns something
about the domain shift, significantly improving the performance over the base-
lines, with asymm beating symm. Note that the overall accuracies are higher
as this is a 16-way classification task. The last row shows results on an instance
classification task, tackling the shift from Amazon to user environment images.
While the symmetric method does not improve on the baseline in this case (pos-
sibly due to limited training data, only 2 images per product in amazon), the
asymmetric method is able to compensate for some of this domain shift.

In both of the above settings, our symm method outperforms the standard
metric learning baseline ITML(A+B). This clearly demonstrates the advantage
of our approach of sampling class-based constraints using inter-domain pairs and,
for new-category experiments, of using correspondence constraints.

6 Conclusion

We presented a detailed study of domain shift in the context of object recogni-
tion, and introduced a novel adaptation technique that projects the features into
a domain-invariant space via a transformation learned from labeled source and
target domain examples. Our approach can be applied to adapt a wide range
of visual models which operate over similarities or distances between samples,
and works both on cases where we need to classify novel test samples from cat-
egories seen at training time, and on cases where the test samples come from
new categories which were not seen at training time. This is especially useful
for object recognition, as large multi-category object databases can be adapted
to new domains without requiring labels for all of the possibly huge number of
categories. Our results show the effectiveness of our technique for adapting k-NN
classifiers to a range of domain shifts.
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