First steps with MUSIC-DF'S

February 4, 2008

Music-DFS mines soundly and completely constraint-based patterns. It is an implementa-
tion of Music [1] which relies on a depth first search method!.

This document proposes a quick help dedicated to only describe Music-DF'S. In particular,
we do not define here concepts about pattern mining.

1 Let’s go!

First, how to mine the patterns which are present at least twice in the dataset?

music-dfs -i data.bin -q "count(x)>=2;"
music-dfs 0.0.5
4

N &~

N OO wwdhbd DR, PP PP P 8
NN WEIINODDOOWR
W N -

Wb Rwe e
N

Description of the command line:

e -i: specify the input file i.e., the dataset (see Section 2.1 for a description of data.bin).

e -q : specify the constraint (here count(x)>=2;). Let us note that the constraint is ended
by a ; and you can use both lower and upper cases.

Description of the output:

e The first line is a comment. ..

e 1 & 4 says that the pattern 1 has a frequency of 4. Similarly, the frequency of the pattern
15is 3.

e 1 3, 2 4 & 2say that all the patterns of the interval [{1, 3}, {1, 2, 3,4}] have a frequency
of 2.

See also -g in Section 3 to speed-up computation of frequent patterns.
See also Section 4.3 to discover other primitives useful to build new constraints.

!The intervals exploited by the solver are quite different. Indeed, the free and closed patterns depends on a
very particular closure operator.

2 File formats

This section depicts the different formats used by Music-DFS.

2.1 Dataset: binary format (.bin)

The binary format is the input format for describing the datasets. The dataset with Music-DFS
has to be specified after the option -1i.
An example of dataset (e.g., data.bin):

cat data.bin
data.bin
256

3 4
345

(S I S e -
O NDN O

Description:
e #: comment a line
e Each number corresponds to an attribute.

e Each line (without #) is an object. For instance, 1 2 5 6 is the object 1, 1 5 is the objct
2 and so on.

Remarks:

e This format is also called ascii format.

2.2 OQOutputed patterns

The option -o enables the user to output the patterns in a file. Otherwise, the default output is

the standard output.
Let us assume that we are interesting in the 2-frequent patterns, the output is as below:

music-dfs -i data.bin -q "count(x)>=2;" -g 2
music-dfs 0.0.5

4

4 & 2

WN&E D&
WN&WN
N

N

& 2

N OO wwdh DD PR, PP PP P~ 86
N

NN OWERERNDOOWR

Wb wee-
N

Description:

e The first line is only a comment which gives the name of the solver.

e The collection of outputted patterns (described by intervals) are exactly the patterns
present in data.bin and satisfying count(z) > 2.

e Each line gives an interval (before the &) and its frequency (after the &).

e An interval [X,Y] is represented by X (before the comma) and Y\ X (after the comma).
Whenever Y\ X is the empty set, the comma is not printed.

Remarks:
e Any pattern satisfying the contraint is contained in one interval.
e The measures are printed after the frequency. The separator is also &.
See also option -1 to swtich the output in latex mode.
See also option -m to print additional measures.
2.3 Translation (.traduc)

This file enables to convert each number (corresponding to an attribute) into a string of charac-
ters.
For instance, we can replace each number by a letter (e.g., attributes.traduc):

cat attributes.traduc

DO WN - &
Mmoo QW

Remarks:

e This principle can be used with the latex mode (i.e., option -1). Be careful! some characters
have special sense in latex. ..

2.4 Values of attributes (.att)

This kind of files is necessary to specify values for each attribute (or object) such price of items.
Such values are used in conjunction of specific primitives (e.g., SUM, MAX and so on, see Section 4.3).

For instance, the file values.att gives two values DIV and PRICE for the different at-
tributes:

$ cat values.att
DIV PRICE

4 15

10

5

20

100

40

NN O DN

The first line enumerates the different names of values. Let us note that the tabulation is
the name separator.

The second line 4 15 specifies that the DIV value of the first attribute is 4 and its price
is 15. Line 2 10 says that the DIV value of attribute 2 equals 2 and the price, 10.

It is possible to use float. ..

e No comment is admited.

3 Speed-up computation

3.1 Minimal frequency threshold

You can specify a classical minimal frequency threshold by using the option -g. Thereby, you
optimize the extraction by preserving the completeness.

By default, the threshold is fixed to 1.
For instance, the mining done in Section 1 can be improved by using -g 2:

music-dfs -i data.bin -q "count(x)>=2;" -g 2
music-dfs 0.0.5

4

4 & 2

WN&E D&
WN&WN
N

N

& 2

N OO wwdh DD PR, PP PP = 8
N

NN OWERERNDOOWR

Wb wee-
N

Let us note that you exactly obtain the same collection of patterns.

See also -t to specify a relative minimal frequency threshold.

3.2 Negative pruning condition w.r.t. the specialization

The anti-monotone prunings can be exploited by Music-DFS. The option -p adds a negative
pruning condition w.r.t. to the specialization [2].

$ music-dfs -i data.bin -q "count(x)>=2;" -p "length(x)>1;"
music-dfs 0.0.5

1&4

6 & 2

4 & 3

3& 3

5& 4

24&3

All the intervals [X, Y] whose length of X is greater than 1 are pruned.
Few remarks:

e -g 2 is equivalent to -p "count(X)<2;". Of course, this option is more general than -g.
e A further version will automate the computation of the pruning condition.
e The extraction presented above is equivalent to:

$ music-dfs -i data.bin -q "count(x)>=2 and [not length(x)>1];" -p "length(x)>1;"

More generally, -q "CONSTRAINT and [not PRUNING];" -p "PRUNING;" is equivalent to
-q "CONSTRAINT;" -p "PRUNING;".

4 Primitive-based constraints

4.1 Few words about constraints

A primitive-based constraint is a simple combination of primitives. You give your constraint
after the option -q. Don’t forget that quotes are often useful.

e X is the variable.
e A pattern is a particular set.

e A set is a list of ordered numbers. For instance, the expression {1-3,5} corresponds to the
set {1,2,3,5}.

e All the primitives (see Section 4.3) can be recursively combined.

4.2 Usual constraints
4.2.1 Emerging patterns

Emerging patterns highligth contrasts between two parts of a same dataset (e.g., according to
the classes). They have a frequency significantly higher among one set of objects than another.

More formally, for comparing the objects O and the objects Oz, we consider the growth rate
of the pattern X:

(LENGTH(02) /LENGTH(01)) *BCOUNT (X, 01) /BCOUNT (X,02)

Assuming that this growth rate is equal to n, the pattern is n times more frequent in the objects
01 than in the objects O-.

Examples :

Mining the emerging patterns of the class corresponding to objects {1,2,3} with a growth rate
is higher or equal to 2:

$ music-dfs -i data.bin -q "BCOUNT(X,{1,2,3})/BCOUNT(X,{4,5,6})>=2;"
1&4&1234

2 ,1&3&134

15&3&124

16 ,25&1¢&1

26 ,15&1¢&1

56 12&1&1

The pattern {1} has a growth rate equal to 3 because it is 3 times more present in the objects
{1,2,3} than in the objects {4,5,6}.

Most of times a coefficient is required to normalize the size of both classes. For instance, in
the below example, we consider that the first class is {1,2} and the second class is {3,4,5,6}.
As the classes do not contain the same number of objects, a coefficient (here 4/2) is necessary.

Mining the patterns twice more present in the objects {1,2} compared to the objects {3,4,5,6}:

music-dfs -i data.bin -q "(4/2)*BCOUNT(X,{1,2})/BCOUNT(X,{3,4,5,6})>=2;"
4 & 1 3 4

4 4 5
2

&

>

s

OANNRFE PO O &
O OO OO R
R, RN WS R

N O O = =
SRS, ONN
= =2 N

IS S S BTN

i B S

s

Without normalisation factor (4/2), the pattern {6} would not be extracted.

4.2.2 Area

The area of a given pattern is its frquency times its length. Intuitively, the area represents the
number of 1 covered by the pattern in the boolean matrix. Thereby, the minimal area constraint

returns all the rectangles of 1 higher than a certain value.
Example: Mining the patterns having an area higher than 4:

$ music-dfs -i data.bin -q "COUNT(X)*LENGTH(X)>=4;"

4.3 More primitives...

Many primitives are implemented in Music-DFS 0.0.5. Table 1 provides a brief description of
all the primitives.

Primitive | Operands Name Comment
count a pattern frequency count (X) returns the frequency of the pattern X
length a set length length(S) returns the length of the set
bcount a pattern, a set of | partial frequency bcount (X, 0) returns the frequency of the pattern X
objects in the subdataset O
subset two sets (affix) subset S1 subset S2 returns true iff S C Sy
subseteq | two sets (affix) subset or equal S1 subseteq S2 returns true iff S; C Sy
supset two sets (affix) supset S1 supset S2 returns true iff S5 D S
supseteq | two sets (affix) supset or equal S1 supseteq S2 returns true iff S; O S5
eq two sets (affix) equal S1 eq S2returns true iff S; =5,
> two reals (affix) greater than r1>r2 returns true iff r; > ro
>= two reals (affix) greater than or | r1>=r2 returns true iff r; > ry
equal to
< two reals (affix) greater than ri<r2 returns true iff 1 < ro
<= two reals (affix) less than or equal to | r1<=r2 returns true iff r; < ry
= two reals (affix) equal to rl=r2 returns true iff r; = ry
EXT a pattern extension EXT(X) returns the extension of the pattern X
SUM a set, an ident sum of values SUM(S.VAL) returns the sum of values VAL of each
element included in S
MAX a set, an ident max of values MAX(S.VAL) returns the maximal value VAL of each
element included in S
MIN a set, an ident min of values MIN(S.VAL) returns the minimal value VAL of each
element included in S
+ two reals (affix) plus ri+r2 returns rq + ro
- two reals (affix) minus ri-r2 returns rq; — ro
* two reals (affix) times rl*r2 returns ri % Xro
/ two reals (affix) slash rl/r2 returns ri/ro
union two sets (affix) privation S1 union S2 returns S; U .Sy
inter two sets (affix) intersection S1 inter S2 returns S; N .Sy
\ two sets (affix) union S1 \ 82 returns S7\So
insim IN SIMilarity
minsim Min SIMilarity
maxsim Max SIMilarity
sumsim Sum SIMilarity
svsim Stated Values SIM-
ilarity
mvsim Missing Values
SIMilarity
regexp REGular EXPres-
sion

Table 1: List of the implemented primitives

5 Need some help?

You can print a short message:

$ music-dfs -h

Use: music-dfs -q <CONSTRAINT> -i <FILE> [OPTION]

Mining with a User-Specifled Constraint (Depth First Search)

Example: music-dfs -i dataset.bin -o patterns -q "count(X)*length(X)>=100;"

Options:
-h, --help give this message
-q, --constraint <CONSTRAINT> constraint to mine
-p, --pruning <PRUNING> negative pruning condition w.r.t. spec.
-m, --measure <MEASURE> measure of pattern
-v, --version give the version number
-V, --verbose ... verbose mode
-i, --input <FILE> dataset to mine
-0, --output <FILE> constrained patterns
-a, --values <FILE> values of attributes
-S, --similarity <FILE> similarity matrix
-d, --delta <NUMBER> maximal number of exceptions
-g, --gamma <NUMBER> minimal absolute frequency threshold
-t, --threshold <[0,1]> minimal frequency threshold
-T, --traduction <FILE> ... traduce outputted patterns
-1, --latex output in latex format
-s, --statistics give several statistics

Report bug to <arnaud.soulet@info.unicaen.fr>.
You can easily get the version number:

$ music-dfs -v
music-dfs 0.0.5

6 Common errors
This section enumerates few classical errors.

e Do not forget the option -i or -q

e Do not forget the semicolon at the end of a constraint/measure/pruning expression:

$ music-dfs -i data.bin -q "count(x)>=2"
<arguments>:1:12: expecting SEMI, found ’’
music: no constraint produced

References

[1] A. Soulet and B. Crémilleux. An efficient framework for mining flexible constraints. In T. B.
Ho, D. Cheung, and H. Liu, editors, PAKDD, volume 3518 of Lecture Notes in Computer
Science, pages 661-671. Springer, 2005.

[2] A. Soulet and B. Crémilleux. Exploiting virtual patterns for automatically pruning the search
space. In KDID, Lecture Notes in Computer Science. Springer, 2005.

