
First steps with Music-DFS

February 4, 2008

Music-DFS mines soundly and completely constraint-based patterns. It is an implementa-
tion of Music [1] which relies on a depth �rst search method1.

This document proposes a quick help dedicated to only describe Music-DFS. In particular,
we do not de�ne here concepts about pattern mining.

1 Let's go!

First, how to mine the patterns which are present at least twice in the dataset?

$ music-dfs -i data.bin -q "count(x)>=2;"

music-dfs 0.0.5

1 & 4

1 3 , 2 4 & 2

1 5 & 3

1 5 2 & 2

1 4 , 2 & 2

1 2 & 3

6 & 2

4 & 3

4 3 , 2 & 2

4 5 & 2

4 2 & 2

3 & 3

3 2 & 2

5 & 4

5 2 & 2

2 & 3

Description of the command line:

• -i : specify the input �le i.e., the dataset (see Section 2.1 for a description of data.bin).

• -q : specify the constraint (here count(x)>=2;). Let us note that the constraint is ended
by a ; and you can use both lower and upper cases.

Description of the output:

• The �rst line is a comment. . .

• 1 & 4 says that the pattern 1 has a frequency of 4. Similarly, the frequency of the pattern
1 5 is 3.

• 1 3 , 2 4 & 2 say that all the patterns of the interval [{1, 3}, {1, 2, 3, 4}] have a frequency
of 2.

See also -g in Section 3 to speed-up computation of frequent patterns.
See also Section 4.3 to discover other primitives useful to build new constraints.

1The intervals exploited by the solver are quite di�erent. Indeed, the free and closed patterns depends on a

very particular closure operator.

1

2 File formats

This section depicts the di�erent formats used by Music-DFS.

2.1 Dataset: binary format (.bin)

The binary format is the input format for describing the datasets. The dataset withMusic-DFS

has to be speci�ed after the option -i.
An example of dataset (e.g., data.bin):

$ cat data.bin

data.bin

1 2 5 6

1 5

1 2 3 4

1 2 3 4 5

4 5

3 6

Description:

• #: comment a line

• Each number corresponds to an attribute.

• Each line (without #) is an object. For instance, 1 2 5 6 is the object 1, 1 5 is the objct
2 and so on.

Remarks:

• This format is also called ascii format.

2.2 Outputed patterns

The option -o enables the user to output the patterns in a �le. Otherwise, the default output is
the standard output.

Let us assume that we are interesting in the 2-frequent patterns, the output is as below:

$ music-dfs -i data.bin -q "count(x)>=2;" -g 2

music-dfs 0.0.5

1 & 4

1 3 , 2 4 & 2

1 5 & 3

1 5 2 & 2

1 4 , 2 & 2

1 2 & 3

6 & 2

4 & 3

4 3 , 2 & 2

4 5 & 2

4 2 & 2

3 & 3

3 2 & 2

5 & 4

5 2 & 2

2 & 3

Description:

• The �rst line is only a comment which gives the name of the solver.

2

• The collection of outputted patterns (described by intervals) are exactly the patterns
present in data.bin and satisfying count(x) ≥ 2.

• Each line gives an interval (before the &) and its frequency (after the &).

• An interval [X, Y] is represented by X (before the comma) and Y \X (after the comma).
Whenever Y \X is the empty set, the comma is not printed.

Remarks:

• Any pattern satisfying the contraint is contained in one interval.

• The measures are printed after the frequency. The separator is also &.

See also option -l to swtich the output in latex mode.
See also option -m to print additional measures.

2.3 Translation (.traduc)

This �le enables to convert each number (corresponding to an attribute) into a string of charac-
ters.

For instance, we can replace each number by a letter (e.g., attributes.traduc):

$ cat attributes.traduc

1 A

2 B

3 C

4 D

5 E

6 F

Remarks:

• This principle can be used with the latex mode (i.e., option -l). Be careful! some characters
have special sense in latex. . .

2.4 Values of attributes (.att)

This kind of �les is necessary to specify values for each attribute (or object) such price of items.
Such values are used in conjunction of speci�c primitives (e.g., SUM, MAX and so on, see Section 4.3).

For instance, the �le values.att gives two values DIV and PRICE for the di�erent at-
tributes:

$ cat values.att

DIV PRICE

4 15

2 10

4 5

5 20

2 100

2 40

• The �rst line enumerates the di�erent names of values. Let us note that the tabulation is
the name separator.

• The second line 4 15 speci�es that the DIV value of the �rst attribute is 4 and its price
is 15. Line 2 10 says that the DIV value of attribute 2 equals 2 and the price, 10.

• It is possible to use �oat. . .

• No comment is admited.

3

3 Speed-up computation

3.1 Minimal frequency threshold

You can specify a classical minimal frequency threshold by using the option -g. Thereby, you
optimize the extraction by preserving the completeness.

By default, the threshold is �xed to 1.
For instance, the mining done in Section 1 can be improved by using -g 2:

$ music-dfs -i data.bin -q "count(x)>=2;" -g 2

music-dfs 0.0.5

1 & 4

1 3 , 2 4 & 2

1 5 & 3

1 5 2 & 2

1 4 , 2 & 2

1 2 & 3

6 & 2

4 & 3

4 3 , 2 & 2

4 5 & 2

4 2 & 2

3 & 3

3 2 & 2

5 & 4

5 2 & 2

2 & 3

Let us note that you exactly obtain the same collection of patterns.

See also -t to specify a relative minimal frequency threshold.

3.2 Negative pruning condition w.r.t. the specialization

The anti-monotone prunings can be exploited by Music-DFS. The option -p adds a negative
pruning condition w.r.t. to the specialization [2].

$ music-dfs -i data.bin -q "count(x)>=2;" -p "length(x)>1;"

music-dfs 0.0.5

1 & 4

6 & 2

4 & 3

3 & 3

5 & 4

2 & 3

All the intervals [X, Y] whose length of X is greater than 1 are pruned.
Few remarks:

• -g 2 is equivalent to -p "count(X)<2;". Of course, this option is more general than -g.

• A further version will automate the computation of the pruning condition.

• The extraction presented above is equivalent to:

$ music-dfs -i data.bin -q "count(x)>=2 and [not length(x)>1];" -p "length(x)>1;"

More generally, -q "CONSTRAINT and [not PRUNING];" -p "PRUNING;" is equivalent to
-q "CONSTRAINT;" -p "PRUNING;".

4

4 Primitive-based constraints

4.1 Few words about constraints

A primitive-based constraint is a simple combination of primitives. You give your constraint
after the option -q. Don't forget that quotes are often useful.

• X is the variable.

• A pattern is a particular set.

• A set is a list of ordered numbers. For instance, the expression {1�3,5} corresponds to the
set {1, 2, 3, 5}.

• All the primitives (see Section 4.3) can be recursively combined.

4.2 Usual constraints

4.2.1 Emerging patterns

Emerging patterns highligth contrasts between two parts of a same dataset (e.g., according to
the classes). They have a frequency signi�cantly higher among one set of objects than another.

More formally, for comparing the objects O1 and the objects O2, we consider the growth rate
of the pattern X:

(LENGTH(O2)/LENGTH(O1))*BCOUNT(X,O1)/BCOUNT(X,O2)

Assuming that this growth rate is equal to n, the pattern is n times more frequent in the objects
O1 than in the objects O2.

Examples :
Mining the emerging patterns of the class corresponding to objects {1,2,3} with a growth rate

is higher or equal to 2:

$ music-dfs -i data.bin -q "BCOUNT(X,{1,2,3})/BCOUNT(X,{4,5,6})>=2;"

1 & 4 & 1 2 3 4

2 , 1 & 3 & 1 3 4

1 5 & 3 & 1 2 4

1 6 , 2 5 & 1 & 1

2 6 , 1 5 & 1 & 1

5 6 , 1 2 & 1 & 1

The pattern {1} has a growth rate equal to 3 because it is 3 times more present in the objects
{1,2,3} than in the objects {4,5,6}.

Most of times a coe�cient is required to normalize the size of both classes. For instance, in
the below example, we consider that the �rst class is {1,2} and the second class is {3,4,5,6}.
As the classes do not contain the same number of objects, a coe�cient (here 4/2) is necessary.

Mining the patterns twice more present in the objects {1,2} compared to the objects {3,4,5,6}:

$ music-dfs -i data.bin -q "(4/2)*BCOUNT(X,{1,2})/BCOUNT(X,{3,4,5,6})>=2;"

1 & 4 & 1 2 3 4

5 & 4 & 1 2 4 5

6 & 2 & 1 6

1 5 & 3 & 1 2 4

1 6 , 2 5 & 1 & 1

2 5 , 1 & 2 & 1 4

2 6 , 1 5 & 1 & 1

5 6 , 1 2 & 1 & 1

Without normalisation factor (4/2), the pattern {6} would not be extracted.

5

4.2.2 Area

The area of a given pattern is its frquency times its length. Intuitively, the area represents the
number of 1 covered by the pattern in the boolean matrix. Thereby, the minimal area constraint
returns all the rectangles of 1 higher than a certain value.

Example: Mining the patterns having an area higher than 4:

$ music-dfs -i data.bin -q "COUNT(X)*LENGTH(X)>=4;"

4.3 More primitives. . .

Many primitives are implemented in Music-DFS 0.0.5. Table 1 provides a brief description of
all the primitives.

Primitive Operands Name Comment

count a pattern frequency count(X) returns the frequency of the pattern X
length a set length length(S) returns the length of the set
bcount a pattern, a set of

objects
partial frequency bcount(X,O) returns the frequency of the pattern X

in the subdataset O
subset two sets (a�x) subset S1 subset S2 returns true i� S1 ⊂ S2

subseteq two sets (a�x) subset or equal S1 subseteq S2 returns true i� S1 ⊆ S2

supset two sets (a�x) supset S1 supset S2 returns true i� S1 ⊃ S2

supseteq two sets (a�x) supset or equal S1 supseteq S2 returns true i� S1 ⊇ S2

eq two sets (a�x) equal S1 eq S2 returns true i� S1 = S2

> two reals (a�x) greater than r1>r2 returns true i� r1 > r2

>= two reals (a�x) greater than or
equal to

r1>=r2 returns true i� r1 ≥ r2

< two reals (a�x) greater than r1<r2 returns true i� r1 < r2

<= two reals (a�x) less than or equal to r1<=r2 returns true i� r1 ≤ r2

= two reals (a�x) equal to r1=r2 returns true i� r1 = r2

EXT a pattern extension EXT(X) returns the extension of the pattern X
SUM a set, an ident sum of values SUM(S.VAL) returns the sum of values VAL of each

element included in S
MAX a set, an ident max of values MAX(S.VAL) returns the maximal value VAL of each

element included in S
MIN a set, an ident min of values MIN(S.VAL) returns the minimal value VAL of each

element included in S
+ two reals (a�x) plus r1+r2 returns r1 + r2

- two reals (a�x) minus r1-r2 returns r1 − r2

* two reals (a�x) times r1*r2 returns r1 ∗ ×r2

/ two reals (a�x) slash r1/r2 returns r1/r2

union two sets (a�x) privation S1 union S2 returns S1 ∪ S2

inter two sets (a�x) intersection S1 inter S2 returns S1 ∩ S2

\ two sets (a�x) union S1 \ S2 returns S1\S2

insim IN SIMilarity
minsim Min SIMilarity
maxsim Max SIMilarity
sumsim Sum SIMilarity
svsim Stated Values SIM-

ilarity
mvsim Missing Values

SIMilarity
regexp REGular EXPres-

sion

Table 1: List of the implemented primitives

6

5 Need some help?

You can print a short message:

$ music-dfs -h

Use: music-dfs -q <CONSTRAINT> -i <FILE> [OPTION] ...

Mining with a User-SpecifIed Constraint (Depth First Search)

Example: music-dfs -i dataset.bin -o patterns -q "count(X)*length(X)>=100;"

Options:

-h, --help give this message

-q, --constraint <CONSTRAINT> constraint to mine

-p, --pruning <PRUNING> negative pruning condition w.r.t. spec.

-m, --measure <MEASURE> measure of pattern

-v, --version give the version number

-V, --verbose ... verbose mode

-i, --input <FILE> dataset to mine

-o, --output <FILE> constrained patterns

-a, --values <FILE> values of attributes

-S, --similarity <FILE> similarity matrix

-d, --delta <NUMBER> maximal number of exceptions

-g, --gamma <NUMBER> minimal absolute frequency threshold

-t, --threshold <[0,1]> minimal frequency threshold

-T, --traduction <FILE> ... traduce outputted patterns

-l, --latex output in latex format

-s, --statistics give several statistics

Report bug to <arnaud.soulet@info.unicaen.fr>.

You can easily get the version number:

$ music-dfs -v

music-dfs 0.0.5

6 Common errors

This section enumerates few classical errors.

• Do not forget the option -i or -q

• Do not forget the semicolon at the end of a constraint/measure/pruning expression:

$ music-dfs -i data.bin -q "count(x)>=2"

<arguments>:1:12: expecting SEMI, found ''

music: no constraint produced

References

[1] A. Soulet and B. Crémilleux. An e�cient framework for mining �exible constraints. In T. B.
Ho, D. Cheung, and H. Liu, editors, PAKDD, volume 3518 of Lecture Notes in Computer

Science, pages 661�671. Springer, 2005.

[2] A. Soulet and B. Crémilleux. Exploiting virtual patterns for automatically pruning the search
space. In KDID, Lecture Notes in Computer Science. Springer, 2005.

7

