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Basics about Kernels
Graph Kernels

Motivation

Structural Pattern Recognitionyq q
Rich description of objectsyq q
Poor properties of graph's space does not allow to readily
generalize/combine sets of graphs

Statistical Pattern Recognitionyq q
Global description of objectsyq q
Numerical spaces with many mathematical properties (metric,
vector space, . . . ).

Motivation

Analyse large famillies of structural and numerical objects using a uni�ed
framework based on pairwise similarity.
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Kernels : De�nition

A kernel k is a symmetric similarity measure on a set χ

∀(x, y) ∈ χ2, k(x, y) = k(y, x)

k is said to be de�nite positive (d.p.) i� k is symmetric and i�:

∀(x1, . . . , xn) ∈ χn

∀(c1, . . . , cn) ∈ Rn

} n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0

K = (k(xi, xj))(i,j)∈{1,...,n} is the Gramm matrix of k. k is d.p. i�:

∀c ∈ Rn − {0}, ctKc ≥ 0

L. Brun (GREYC) Graph Kernels 3 / 14



Basics about Kernels
Graph Kernels

Kernels and scalar products

Aronszajn 1950 :

A kernel k is d.p. on a space χ
if and only if

it exists

one Hilbert space H and

a function ϕ : χ→ H
such that:

k(x, y) =< ϕ(x), ϕ(y) >
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Outline

Kernel and strutured data

The kernel trick provides an implicit embedding whose metric is de�ned from
our similarity criterion (the kernel).
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Walk kernels

Walks: Let G = (V,E). W = (v1, . . . , vn) is a walk i�
(vi, vi+1) ∈ E,∀i ∈ {1, . . . , n− 1}.

t t
t t t







 t t t t t tis a walk

Kernel between walks

K(h, h′) =

{
0 if |h| 6= [h′| and
Kv(v1, v

′
1).Π

|h|
i=1Ke(ei, e

′
i)Kv(vi+1, v

′
i+1) otherwize

Walk kernels :

K(G1, G2) =
∑

h∈W(G1)

∑
h′∈W(G2)

K(h, h′)λG1(h)λG2(h′)
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Finite Bag kernels

G → B(G)
G′ → B(G′)

}
K(G,G′) = K(B(G), B(G′))

Three independent step to design a graph kernel.

Bags of patterns
construction scheme

Bag of Pattern kernel Pattern kernel

Graph Kernel
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Questions :

Which type of graph best capture object's properties ?
Shape recognition:

Shape described by skeletons encoded by graphs G = (V,E, ω).
V :

extremities/intersection of branches or
abrupt changes of the radius along a
branch.

E:

branches of the skeleton.
Each edge is weighted by a function ω
encoding the length of the boundary
which contributed to the branch
[Torsello04].

Chemoinformatic: G = (V,E, µ, ν)

V set of atoms, µ atom's type,

E set of bounds, ν bound's type.
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Questions :

Which type of graph best capture object's properties ?

Which pattern should we choose ?

Paths,

Sub trees,

Sub graphs.

Sub combinatorial maps,. . .

How to build a bag which minimizes the loss of information ?

All patterns up to a given size ?
More relevant patterns ?

Shape recognition: A priori information → covering problem
Chemoinformatics: Multiple kernel learning with one kernel per pattern.

How to de�ne a kernel between bags
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Bag of paths kernels
shape recognition

Haussler99

Kmean(T1, T2) =
1

|T1|
1

|T2|
∑
t∈T1

∑
t∈T2

Kpattern(t, t′),

More complex kernels

T1
T2

r1
r2

d

O

p(T1) p(T2)

ra
di

us
 =

 1

(Desobry 2005)

K ′(x, y) = K(x,y)√
K(x,x)K(y,y)

K ′(x, x) = ‖ϕ′(x)‖2 = 1

Normalized kernel

Weighted mean kernel

Kweighted(T1, T2) = 1
|T1|

1
|T2|

∑
t∈T1

∑
t′∈T2

λT1
(t)λT2

(t′)Kpattern(t, t′),

λTi
(t) = < ϕ(t), µTi

>d
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Bag of paths kernels
chemoinformatic

Basic

Kmean(G1, G2) =
∑

t∈T (G1)∩T (G2)

K(ft(G1), ft(G2)),

Basic MKL

KBMKL(G1, G2) =
∑

t∈T (G1)∩T (G2)

dtK(ft(G1), ft(G2)),

In�nite MKL

KIMKL(G1, G2) =
∑
t∈T

∑
t′∈T ,t′≤t

dt,t′K(ft(G1), ft′(G2)),

where T = T (G1) ∪ T (G2)
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Pattern kernels
How to compare patterns

Classical approach:

Kclassic(t, t
′) =


0 if t 6∼ t′,∑

ϕ∈Isom(t,t′)

(∏|V |
i=1Kv(µ(vi), ϕ(µ(v′ii)))

)(∏|E|
i=1Ke(ν(ei), ν(e′i))

)
Pb: Similar but not identical patterns are not comparable.

Solutions :

Shape recognition : Use rewrittings

Chemoinformatics : Use edit distance.
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Conclusion

Our aim : Studdy properties of structure space and combine structural
pattern recognition and machine learning/optimisation methods.

Thank you for your attention !

Questions ?
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Next talk.
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