GREYCE®

Flndlng Groups of Duplicate Images
iIn Very Large Datasets

avuthikunchai, Bruno Crémilleux and Frédéric Jurie

22 June 2012

Q ‘i‘.@: N pusicaon




Motivation: finding duplicates
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Search about 3,450,000,000 resuits (0.4 seconds)
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® Unimaginable number of images on the internet but
how high is the redundancy?

® How can we find them?
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Possible solutlons’? CREY

® Clustering? .-

" @ Very expensive
/@ We don’t want to cluster

all images but just find
duplicates!

® Image search’? - _
Query Image « Each image has to be

taken in turn as a
query and the results
has to be merged.




Contributions
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S Principles:
...»..ai-ey ® Turn images into sets of transactions (i.e. lists of
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® Mine transactions and discover those that shared by
several images

Key contributions:

® How to represent images with VERY COMPACT sets
of binary features?

® How to mine the transctions




Our proposed method GR

Bag of word Data mining transaction Mine long patterns

extraction encoding (TF-IDF normalized & with min-support = 2
select top-K words

Transactions containing a
l. _l_ PN long pattern are considered
SR as a group of duplicates.
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Transaction encoding GREYC fﬁ

Top-K =3
. I  Binary feature = 0011100000

® Evaluated in image search scenario using dot product similarity
= measure compare to baseline Bag of word with Chi-2 distance.
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Transaction encoding GREYC fﬁ

» Use the copyday dataset. For evaluating the robustness of image
descriptors against artificial image transformations in an image search

scenario.
- 157 original images, 9 Jpeg Attacks, 9 cropping attacks.
- 1 copy per 1 original image per 1 attack. (1 original image has 18 copies)
- Retrieve set - The original images + 10,000 noise images.
- Evaluate by taking each copy image as query, and find it's original from the
retrieve set.

® Results tune Top-K (JPEG75)

/ "~ | « Top-K visual words performs better than
., top-K semantic concepts.
| * Optimum results when K>=6 for
, bag of word (100 and 1,000 dimension)
» Select K=10, for other experiments
in order to be robust against more difficult
o] g ~ bomomn || AACKS.
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Transaction encoding

retrieval
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® Results Jpeg and crop attacks
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« Larger vocab performs better.
* The top-K binary feature performs as good as the baseline for
Jpeg attacks and crop attacks below 30% cropping factor.

® Conclusion — the new representation is sufficient for detecting
duplicates having a very compact size of only ~13 bytes.




Mining duplicate groups SREY

® Quantitative results

* Use copyday dataset mix 157 original images with sets of
attacks images + 1,000,000 artificial noise images.
» Optimum results is to correctly detect 157 groups of
; duplicates (mean F-score = 1)
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Minlength = 7 and 1,000 visual words dictionary gives optimal results.
For the light attacks, the groups of images are perfectly detected. Even for
the strongest attacks the results are still very good
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Time complexity grows exponentially
according to top-K

Time complexity grows linearly according to
number of images

Memory usage grows linearly according to
number of images

memory usages

HMe IN 56C

1500

100M -

S50M~

—=— bow100-top10
— bow1000—top10

0 1 1 1 |
0 1000k 2000k 3000k 4000k S5S000k G000k 7000k 8000k 9000k 1M
number of images

100}

501

3’—-—_bomoo-’t6¢10'
: : : i bowlooo-topw

Q 1000k 2000k 3000k 4000k S000k 6000k 7000k 8000 9000 1M
number of images




Mining duplicate groups CREY

® Qualitative results

« Use the “One million random web images database”.
« ~80,000 groups of duplicate images found in less than 3 minutes.
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- Thank you!
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