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Infinitely many features?

When does it occurs?

@ Feature extraction with continuous parameters

@ Wavelet or Gabor based features of the form

<X, 77/)j,k,9> <X’ wu,v,a,)\>

e Brain Computer Interfaces problem or texture ecognition

@ Explicit feature maps with continuous parameters
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o kernel with feature scaling : k(x,x’) = e

Approach

@ Consider a empirical risk minimization framework that selects few
features among infinitely many

@ sparsity inducing regularizers

v
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Related work

@ Extension the Lasso to infinite dimension feature space (Rosset,
COLT 2004)

p€r71;,i;1>oz L (y,, / )p(a)cm) st / p(0)do < A

£1 like penalty
Equivalent to the Lasso if the parameter space is finite

the solution is still sparse

LARS-like path-following algorithm for solving the problem

e works for specific features
e unstable
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Our framework

@ Formulation
e Look for the finite subset of feature that yields to the lowest
minimum empirical risk
e The number of finite subset is still infinite but the ERM applies to a
finite number of features.

e Notations
o F the set of all possible finite subset of features
e ¢ an element of F composed of d features {®g,}¢ ,, with 6 being
the feature parameter
o For an optimal ¢* with optimal parameters {07}, the decision
function writes:

f(x) = Zqu)gj* (x) =w'dy
j=1
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Optimization problem

@ Learning examples {x;,yi}" ;
@ Formulation

n

minmin > L(y;, w’ ®g(x;)) + AQ(w)
peF W i

o L(-,-) convex and differentiable loss function
o Q(-) norm based sparsity-inducing regularizers
e A : trade-off hyperparameter

@ two-step optimization, bi-level optimization
o ERM with finite feature set ¢
e optimization over the feature set
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Optimality conditions for Q(w) = ||wl||;

@ inner problem

> ®o,(xi) L (vi, wT ®g(x;)) + Asign(w;) =0 if wj #0
‘Zi¢9j(x,-)L’(y,-,wT¢g(x,-))‘ <X ifwj=0and ¢y €

o full problem

> ®o. (X)L (yi,w Td’e( ))+)\51gn(wj) =0 ifw#0
37 @, (x (y,,w By(x;))| <A if wy=0and &y € ¢
!Z¢ (yi,wTo(x))| <A ifdgo

@ Intuition : a feature violating constraint in red also violates the

optimality condition of the inner problem with augmented feature
set pUP
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@ Violating constraint feature

@ suppose w* solution of the inner problem with the feature set .
e any & violating

<A

Z¢(X;)L'(y;,W*T¢9(Xr‘))

would lead to a decrease of the objective function if added to .
@ Active set Algorithm

e train with a finite set of feature ¢
e select one violating constraint ¢ and update ¢ : ¢ < U ¢
e re-train
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Algorithm properties

@ For checking the optimality of the full problem, we have to be able
to solve

max

Z O(x;) L' (vi, WT%(X,'))‘

1

@ e-approximate solution : if the inner problem can be solved exactly
and we can compute the above equation then the algorithm provides
an e-approximate solution in finite time.
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Violating constraint features

@ A key point of the algorithm is the resolution of

max
(0]

Z o(x;) L' (yi, WTq’@(xi))‘

@ Depending on L(+,-) and the structure of ®y, the problem can be
very difficult.
@ randomization, brute force, or clever search if applicable

e sample some values of 6
o select the feature that maximizes | Y, ®(x;)L (i, w” ®y(x;))|
e sub-optimal but efficient
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Extensions to other paradigms

e non-differentiable norm-based regularization term Q(w) = ¢; — /.
The violating constraint condition becomes

e

with Q*(w) being the dual norm of Q(w).

L/ yla T¢9j(xi)) S A

q

@ Multi-task framework with shared and specific norm based
regularizers for feature selection e.g {1 — £4 mixed-norm whose dual
is goo — Zq/

d
[Wilsg = IW.llq
i=1
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Application to kernel and multiple kernel approximation

@ simple and efficient to kernel method : use explicit features if any.

o Gaussian kernel k(x, x’)

k(x,x) ~ Z[cos(v]—x) cos(v/ x') + sin(v; x) sin(v] x')]
j=1

where {v;} are random vectors samples according to the FT of the
Gaussian kernel
@ Application in our framework :
e sample several values of the Gaussian kernel bandwidth
o for each value, draw direction vectors {v;}
e for all bandwidth and direction vectors, compute the constraint
violation
select the pair of features violating the most their constraints.
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Experimental results

@ Gabor features for multiclass texture recognition problems
e comparison with sampled parameters of feature extraction
@ Large scale approximated kernel machines
e comparison with incomplete choleski decomposition
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Gabor feature for texture recognition

@ 3 classes, 16 x 16 patches from the texture image
@ increasing number of features and 1000 examples per class
@ approaches
e GrFL : our method
o fixed feat : pre-defined features through discretization
o selected feat: Lasso with 3000 of the features visited by GrFL
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Gabor feature for texture recognition

@ increasing number of training samples with 81 Gabor features
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@ learning with infinitely many cheaper than learning with many

@ do not sample parameters but take advantage of the continuous
parameters
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Large scale kernel machines

@ Gaussian kernel with explicit and selected feature maps
e datasets : Adult and IJCNNI (40k and 110k training examples)

@ sample kernel bandwidth and then sample vector direction

| Adult 1JCNN1L |
FH feat  GIFL__ GrFL-M IC GrFL_ GrFL-M IC
10 8382 8377 8338 || 9206  91.96  91.03
50 8476  84.86 8458 || 97.05 9697  92.19
100 8498  85.00 8484 || 9797  98.02  93.29
500 8524 8530 8504 - - -
| Adult 1JCNN1 ]
ratioGIFL___GIFLM 1IC GIFL___GIFLM IC
01 8423 8434 8454 || 9627  96.67 9338
03 8478  84.87 8472 || 9740  97.77 9323
05 8491  84.95 8474 || 97.75  97.96 9332
07 8498  85.00  84.84 || 97.97  98.02 9329

@ Better performances than Incomplete Choleski decomposition

e Easy multiple Gaussian kernel

A. Rakotomamonjy joint work with R. Flama

June 2012



Conclusions

@ Framework for learning with infinitely features that is generic to loss
functions and sparsity inducing regularizers

@ work pretty well from an empirical point of view

@ Questions

e Theoretical guarantees when the algorithm stops at non-optimal
solution?
o Are we sure that the selected features are “similar” to the true ones?
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